These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

644 related articles for article (PubMed ID: 27849583)

  • 21. A Type IV-A CRISPR-Cas System in
    Crowley VM; Catching A; Taylor HN; Borges AL; Metcalf J; Bondy-Denomy J; Jackson RN
    CRISPR J; 2019 Dec; 2(6):434-440. PubMed ID: 31809194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR control of virulence in Pseudomonas aeruginosa.
    Wiedenheft B; Bondy-Denomy J
    Cell Res; 2017 Feb; 27(2):163-164. PubMed ID: 28084330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cost and benefits of clustered regularly interspaced short palindromic repeats spacer acquisition.
    Bradde S; Mora T; Walczak AM
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180095. PubMed ID: 30905281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput screen reveals sRNAs regulating crRNA biogenesis by targeting CRISPR leader to repress Rho termination.
    Lin P; Pu Q; Wu Q; Zhou C; Wang B; Schettler J; Wang Z; Qin S; Gao P; Li R; Li G; Cheng Z; Lan L; Jiang J; Wu M
    Nat Commun; 2019 Aug; 10(1):3728. PubMed ID: 31427601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.
    Varble A; Meaden S; Barrangou R; Westra ER; Marraffini LA
    Nat Microbiol; 2019 Jun; 4(6):956-963. PubMed ID: 30886355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Updates on the pathogenicity status of Pseudomonas aeruginosa.
    Azam MW; Khan AU
    Drug Discov Today; 2019 Jan; 24(1):350-359. PubMed ID: 30036575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies.
    Newsom S; Parameshwaran HP; Martin L; Rajan R
    Front Cell Infect Microbiol; 2020; 10():619763. PubMed ID: 33585286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR adaptation in Escherichia coli subtypeI-E system.
    Kiro R; Goren MG; Yosef I; Qimron U
    Biochem Soc Trans; 2013 Dec; 41(6):1412-5. PubMed ID: 24256229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phage gene expression and host responses lead to infection-dependent costs of CRISPR immunity.
    Meaden S; Capria L; Alseth E; Gandon S; Biswas A; Lenzi L; van Houte S; Westra ER
    ISME J; 2021 Feb; 15(2):534-544. PubMed ID: 33011743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein.
    Pawluk A; Shah M; Mejdani M; Calmettes C; Moraes TF; Davidson AR; Maxwell KL
    mBio; 2017 Dec; 8(6):. PubMed ID: 29233895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.
    Burmistrz M; Dudek B; Staniec D; Rodriguez Martinez JI; Bochtler M; Potempa J; Pyrc K
    J Bacteriol; 2015 Aug; 197(16):2631-41. PubMed ID: 26013482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity.
    Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC
    Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Come Together: CRISPR-Cas Immunity Senses the Quorum.
    Semenova E; Severinov K
    Mol Cell; 2016 Dec; 64(6):1013-1015. PubMed ID: 27984739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas systems in oral microbiome: From immune defense to physiological regulation.
    Gong T; Zeng J; Tang B; Zhou X; Li Y
    Mol Oral Microbiol; 2020 Apr; 35(2):41-48. PubMed ID: 31995666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GalK limits type I-F CRISPR-Cas expression in a CRP-dependent manner.
    Hampton HG; Patterson AG; Chang JT; Taylor C; Fineran PC
    FEMS Microbiol Lett; 2019 Jun; 366(11):. PubMed ID: 31226710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity.
    Faure G; Makarova KS; Koonin EV
    J Mol Biol; 2019 Jan; 431(1):3-20. PubMed ID: 30193985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery.
    Vorontsova D; Datsenko KA; Medvedeva S; Bondy-Denomy J; Savitskaya EE; Pougach K; Logacheva M; Wiedenheft B; Davidson AR; Severinov K; Semenova E
    Nucleic Acids Res; 2015 Dec; 43(22):10848-60. PubMed ID: 26586803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Why so rare if so essentiel: the determinants of the sparse distribution of CRISPR-Cas systems in bacterial genomes].
    Bernheim A
    Biol Aujourdhui; 2017; 211(4):255-264. PubMed ID: 29956652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa.
    Pawluk A; Bondy-Denomy J; Cheung VH; Maxwell KL; Davidson AR
    mBio; 2014 Apr; 5(2):e00896. PubMed ID: 24736222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.