BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 27849601)

  • 41. Biosynthesis and function of posttranscriptional modifications of transfer RNAs.
    El Yacoubi B; Bailly M; de Crécy-Lagard V
    Annu Rev Genet; 2012; 46():69-95. PubMed ID: 22905870
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Domain organization and crystal structure of the catalytic domain of E.coli RluF, a pseudouridine synthase that acts on 23S rRNA.
    Sunita S; Zhenxing H; Swaathi J; Cygler M; Matte A; Sivaraman J
    J Mol Biol; 2006 Jun; 359(4):998-1009. PubMed ID: 16712869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. tRNA binding, positioning, and modification by the pseudouridine synthase Pus10.
    Kamalampeta R; Keffer-Wilkes LC; Kothe U
    J Mol Biol; 2013 Oct; 425(20):3863-74. PubMed ID: 23743107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three modifications in the D and T arms of tRNA influence translation in Escherichia coli and expression of virulence genes in Shigella flexneri.
    Urbonavicius J; Durand JM; Björk GR
    J Bacteriol; 2002 Oct; 184(19):5348-57. PubMed ID: 12218021
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RNA chaperone activity and RNA-binding properties of the E. coli protein StpA.
    Mayer O; Rajkowitsch L; Lorenz C; Konrat R; Schroeder R
    Nucleic Acids Res; 2007; 35(4):1257-69. PubMed ID: 17267410
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substrate recognition by RNA 5-methyluridine methyltransferases and pseudouridine synthases: a structural perspective.
    Hur S; Stroud RM; Finer-Moore J
    J Biol Chem; 2006 Dec; 281(51):38969-73. PubMed ID: 17085441
    [No Abstract]   [Full Text] [Related]  

  • 47. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of cysteine residues in pseudouridine synthases of different families.
    Ramamurthy V; Swann SL; Spedaliere CJ; Mueller EG
    Biochemistry; 1999 Oct; 38(40):13106-11. PubMed ID: 10529181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleotide modification in vitro of the precursor of transfer RNA of Escherichia coli.
    Schaefer KP; Altman S; Söll D
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3626-30. PubMed ID: 4587257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteins That Chaperone RNA Regulation.
    Woodson SA; Panja S; Santiago-Frangos A
    Microbiol Spectr; 2018 Jul; 6(4):. PubMed ID: 30051798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for psi 746 in 23S RNA is also specific for psi 32 in tRNA(phe).
    Wrzesinski J; Nurse K; Bakin A; Lane BG; Ofengand J
    RNA; 1995 Jun; 1(4):437-48. PubMed ID: 7493321
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis.
    Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M
    FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human TRUB1 is a highly conserved pseudouridine synthase responsible for the formation of Ψ55 in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro.
    Jia Z; Meng F; Chen H; Zhu G; Li X; He Y; Zhang L; He X; Zhan H; Chen M; Ji Y; Wang M; Guan MX
    Nucleic Acids Res; 2022 Sep; 50(16):9368-9381. PubMed ID: 36018806
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons.
    Sakai Y; Miyauchi K; Kimura S; Suzuki T
    Nucleic Acids Res; 2016 Jan; 44(2):509-23. PubMed ID: 26681692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The RNA chaperone StpA enables fast RNA refolding by destabilization of mutually exclusive base pairs within competing secondary structure elements.
    Hohmann KF; Blümler A; Heckel A; Fürtig B
    Nucleic Acids Res; 2021 Nov; 49(19):11337-11349. PubMed ID: 34614185
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Base pairing within the psi32,psi39-modified anticodon arm of Escherichia coli tRNA(Phe).
    Tworowska I; Nikonowicz EP
    J Am Chem Soc; 2006 Dec; 128(49):15570-1. PubMed ID: 17147349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein Synthesis in E. coli: Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage.
    Rudorf S; Lipowsky R
    PLoS One; 2015; 10(8):e0134994. PubMed ID: 26270805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NAIL-MS reveals the repair of 2-methylthiocytidine by AlkB in E. coli.
    Reichle VF; Petrov DP; Weber V; Jung K; Kellner S
    Nat Commun; 2019 Dec; 10(1):5600. PubMed ID: 31811240
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The 51-63 base pair of tRNA confers specificity for binding by EF-Tu.
    Sanderson LE; Uhlenbeck OC
    RNA; 2007 Jun; 13(6):835-40. PubMed ID: 17449728
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution of two conserved histidines to the dual activity of archaeal RNA guide-dependent and -independent pseudouridine synthase Cbf5.
    Tillault AS; Fourmann JB; Loegler C; Wieden HJ; Kothe U; Charpentier B
    RNA; 2015 Jul; 21(7):1233-9. PubMed ID: 25990001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.