These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27849607)

  • 21. Ignoring the irrelevant: auditory tolerance of audible but innocuous sounds in the bat-detecting ears of moths.
    Fullard JH; Ratcliffe JM; Jacobs DS
    Naturwissenschaften; 2008 Mar; 95(3):241-5. PubMed ID: 18038121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extinction of the acoustic startle response in moths endemic to a bat-free habitat.
    Fullard JH; Ratcliffe JM; Soutar AR
    J Evol Biol; 2004 Jul; 17(4):856-61. PubMed ID: 15271085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of bat echolocation call duration and timing on auditory encoding of predator distance in noctuoid moths.
    Gordon SD; Ter Hofstede HM
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29567831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hawkmoths produce anti-bat ultrasound.
    Barber JR; Kawahara AY
    Biol Lett; 2013 Aug; 9(4):20130161. PubMed ID: 23825084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for short-range sonic communication in lymantriine moths.
    Rowland E; Schaefer PW; Belton P; Gries G
    J Insect Physiol; 2011 Feb; 57(2):292-9. PubMed ID: 21115014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Eocene insect could hear conspecific ultrasounds and bat echolocation.
    Woodrow C; Celiker E; Montealegre-Z F
    Curr Biol; 2023 Dec; 33(24):5304-5315.e3. PubMed ID: 37963458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary escalation: the bat-moth arms race.
    Ter Hofstede HM; Ratcliffe JM
    J Exp Biol; 2016 Jun; 219(Pt 11):1589-602. PubMed ID: 27252453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directional sensitivity of bat inferior collicular neurons determined under normal and monaurally plugged ear conditions.
    Jen PH; Wu M; Pinheiro AD
    Chin J Physiol; 1991; 34(4):371-86. PubMed ID: 1820843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sound strategies: the 65-million-year-old battle between bats and insects.
    Conner WE; Corcoran AJ
    Annu Rev Entomol; 2012; 57():21-39. PubMed ID: 21888517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ear pinnae in a neotropical katydid (Orthoptera: Tettigoniidae) function as ultrasound guides for bat detection.
    Pulver CA; Celiker E; Woodrow C; Geipel I; Soulsbury CD; Cullen DA; Rogers SM; Veitch D; Montealegre-Z F
    Elife; 2022 Sep; 11():. PubMed ID: 36170144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Echo-acoustic scanning with noseleaf and ears in phyllostomid bats.
    Kugler K; Wiegrebe L
    J Exp Biol; 2017 Aug; 220(Pt 15):2816-2824. PubMed ID: 28768750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The gleaning attacks of the northern long-eared bat, Myotis septentrionalis, are relatively inaudible to moths.
    Faure PA; Fullard JH; Dawson JW
    J Exp Biol; 1993 May; 178():173-89. PubMed ID: 8315370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The contribution of tympanic transmission to fine temporal signal evaluation in an ultrasonic moth.
    Rodríguez RL; Schul J; Cocroft RB; Greenfield MD
    J Exp Biol; 2005 Nov; 208(Pt 21):4159-65. PubMed ID: 16244174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lung-to-ear sound transmission does not improve directional hearing in green treefrogs (
    Christensen-Dalsgaard J; Lee N; Bee MA
    J Exp Biol; 2020 Oct; 223(Pt 20):. PubMed ID: 32895324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanics of a 'simple' ear: tympanal vibrations in noctuid moths.
    Windmill JF; Fullard JH; Robert D
    J Exp Biol; 2007 Aug; 210(Pt 15):2637-48. PubMed ID: 17644678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unexpected dynamic up-tuning of auditory organs in day-flying moths.
    Mora EC; Cobo-Cuan A; Macías-Escrivá F; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jul; 201(7):657-66. PubMed ID: 25894491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tiger moths and the threat of bats: decision-making based on the activity of a single sensory neuron.
    Ratcliffe JM; Fullard JH; Arthur BJ; Hoy RR
    Biol Lett; 2009 Jun; 5(3):368-71. PubMed ID: 19324625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural representation of bat predation risk and evasive flight in moths: A modelling approach.
    Goerlitz HR; Hofstede HMT; Holderied MW
    J Theor Biol; 2020 Feb; 486():110082. PubMed ID: 31734242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?
    Lee WJ; Moss CF
    J Acoust Soc Am; 2016 May; 139(5):2579. PubMed ID: 27250152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of the effects of ultrasound from an odor sprayer on moth flight behavior.
    Skals N; Plepys D; El-Sayed AM; Löfstedt C; Surlykke A
    J Chem Ecol; 2003 Jan; 29(1):71-82. PubMed ID: 12647854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.