These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27851934)

  • 1. Forced Unfolding Mechanism of Bacteriorhodopsin as Revealed by Coarse-Grained Molecular Dynamics.
    Yamada T; Yamato T; Mitaku S
    Biophys J; 2016 Nov; 111(10):2086-2098. PubMed ID: 27851934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-atom and coarse-grained simulations of the forced unfolding pathways of the SNARE complex.
    Zheng W
    Proteins; 2014 Jul; 82(7):1376-86. PubMed ID: 24403006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity-dependent mechanical unfolding of bacteriorhodopsin is governed by a dynamic interaction network.
    Kappel C; Grubmüller H
    Biophys J; 2011 Feb; 100(4):1109-19. PubMed ID: 21320457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulling single bacteriorhodopsin out of a membrane: Comparison of simulation and experiment.
    Cieplak M; Filipek S; Janovjak H; Krzyśko KA
    Biochim Biophys Acta; 2006 Apr; 1758(4):537-44. PubMed ID: 16678120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins.
    Yu H; Siewny MG; Edwards DT; Sanders AW; Perkins TT
    Science; 2017 Mar; 355(6328):945-950. PubMed ID: 28254940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles.
    Krishnamani V; Lanyi JK
    Biochemistry; 2012 Feb; 51(6):1061-9. PubMed ID: 22304411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential unfolding of individual helices of bacterioopsin observed in molecular dynamics simulations of extraction from the purple membrane.
    Seeber M; Fanelli F; Paci E; Caflisch A
    Biophys J; 2006 Nov; 91(9):3276-84. PubMed ID: 16861280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolding barriers in bacteriorhodopsin probed from the cytoplasmic and the extracellular side by AFM.
    Kessler M; Gaub HE
    Structure; 2006 Mar; 14(3):521-7. PubMed ID: 16531236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy.
    Heenan PR; Yu H; Siewny MGW; Perkins TT
    J Chem Phys; 2018 Mar; 148(12):123313. PubMed ID: 29604885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy.
    Jacobson DR; Perkins TT
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the energy landscape of the membrane protein bacteriorhodopsin.
    Janovjak H; Struckmeier J; Hubain M; Kedrov A; Kessler M; Müller DJ
    Structure; 2004 May; 12(5):871-9. PubMed ID: 15130479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the Initial Unfolding of Bacteriorhodopsin Reveals Retinal Stabilization.
    Yu H; Heenan PR; Edwards DT; Uyetake L; Perkins TT
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1710-1713. PubMed ID: 30556941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point mutations in membrane proteins reshape energy landscape and populate different unfolding pathways.
    Sapra KT; Balasubramanian GP; Labudde D; Bowie JU; Muller DJ
    J Mol Biol; 2008 Feb; 376(4):1076-90. PubMed ID: 18191146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single-molecule force spectroscopy.
    Marsico A; Labudde D; Sapra T; Muller DJ; Schroeder M
    Bioinformatics; 2007 Jan; 23(2):e231-6. PubMed ID: 17237097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy of membrane protein unfolding derived from single-molecule force measurements.
    Preiner J; Janovjak H; Rankl C; Knaus H; Cisneros DA; Kedrov A; Kienberger F; Muller DJ; Hinterdorfer P
    Biophys J; 2007 Aug; 93(3):930-7. PubMed ID: 17483176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of individual alpha-helices of bacteriorhodopsin in dimyristoylphosphatidylcholine. II. Interaction energy analysis.
    Woolf TB
    Biophys J; 1998 Jan; 74(1):115-31. PubMed ID: 9449316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment.
    Kandt C; Schlitter J; Gerwert K
    Biophys J; 2004 Feb; 86(2):705-17. PubMed ID: 14747309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of triple glutamic mutations E9Q/E194Q/E204Q on the structural stability of bacteriorhodopsin.
    Lazarova T; Mlynarczyk K; Filipek S; Kolinski M; Wassenaar TA; Querol E; Renugopalakrishnan V; Viswanathan S; Padrós E
    FEBS J; 2014 Feb; 281(4):1181-95. PubMed ID: 24341610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular force modulation spectroscopy revealing the dynamic response of single bacteriorhodopsins.
    Janovjak H; Müller DJ; Humphris AD
    Biophys J; 2005 Feb; 88(2):1423-31. PubMed ID: 15574708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation.
    Zheng W; Glenn P
    J Chem Phys; 2015 Jan; 142(3):035101. PubMed ID: 25612731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.