BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27851946)

  • 41. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes.
    Mudumbi KC; Burns EA; Schodt DJ; Petrova ZO; Kiyatkin A; Kim LW; Mangiacapre EM; Ortiz-Caraveo I; Ortiz HR; Hu C; Ashtekar KD; Lidke KA; Lidke DS; Lemmon MA
    bioRxiv; 2023 Apr; ():. PubMed ID: 37090557
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dr. Deborah Kopansky-Giles, DC, FCCS(C), FICC.
    J Can Chiropr Assoc; 2005 Mar; 49(1):5-6. PubMed ID: 17549144
    [No Abstract]   [Full Text] [Related]  

  • 43. Clustered localization of EGFRvIII in glioblastoma cells as detected by high precision localization microscopy.
    Boyd PS; Struve N; Bach M; Eberle JP; Gote M; Schock F; Cremer C; Kriegs M; Hausmann M
    Nanoscale; 2016 Dec; 8(48):20037-20047. PubMed ID: 27883139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell-Permeable Fluorescent Sensors Enable Rapid Live Cell Visualization of Plasma Membrane and Nuclear PIP3 Pools.
    Kundu R; Kumar S; Chandra A; Datta A
    JACS Au; 2024 Mar; 4(3):1004-1017. PubMed ID: 38559732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual-potential electrochemiluminescence cytosensor based on a metal-organic framework and ABEI-PEI-Au@AgNPs for the simultaneous determination of phosphatidylserine and epidermal growth factor receptors on an apoptotic cell surface.
    Mo G; Qin D; Wu Y; Luo Z; Mo K; Deng B
    Mikrochim Acta; 2023 Aug; 190(9):347. PubMed ID: 37563470
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Current capabilities and future perspectives of FCS: super-resolution microscopy, machine learning, and in vivo applications.
    Sankaran J; Wohland T
    Commun Biol; 2023 Jul; 6(1):699. PubMed ID: 37419967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates?
    Kovacs T; Nagy P; Panyi G; Szente L; Varga Z; Zakany F
    Pharmaceutics; 2022 Nov; 14(12):. PubMed ID: 36559052
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The dependence of EGFR oligomerization on environment and structure: A camera-based N&B study.
    Balasubramanian H; Sankaran J; Pandey S; Goh CJH; Wohland T
    Biophys J; 2022 Dec; 121(23):4452-4466. PubMed ID: 36335429
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cell cycle-dependent binding between Cyclin B1 and Cdk1 revealed by time-resolved fluorescence correlation spectroscopy.
    Barbiero M; Cirillo L; Veerapathiran S; Coates C; Ruffilli C; Pines J
    Open Biol; 2022 Jun; 12(6):220057. PubMed ID: 35765818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microscope alignment using real-time Imaging FCS.
    Aik DYK; Wohland T
    Biophys J; 2022 Jul; 121(14):2663-2670. PubMed ID: 35672950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases.
    Kovacs T; Zakany F; Nagy P
    Cancers (Basel); 2022 Feb; 14(4):. PubMed ID: 35205690
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wnt3 Is Lipidated at Conserved Cysteine and Serine Residues in Zebrafish Neural Tissue.
    Dhasmana D; Veerapathiran S; Azbazdar Y; Nelanuthala AVS; Teh C; Ozhan G; Wohland T
    Front Cell Dev Biol; 2021; 9():671218. PubMed ID: 34124053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous spatiotemporal super-resolution and multi-parametric fluorescence microscopy.
    Sankaran J; Balasubramanian H; Tang WH; Ng XW; Röllin A; Wohland T
    Nat Commun; 2021 Mar; 12(1):1748. PubMed ID: 33741958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wnt3 distribution in the zebrafish brain is determined by expression, diffusion and multiple molecular interactions.
    Veerapathiran S; Teh C; Zhu S; Kartigayen I; Korzh V; Matsudaira PT; Wohland T
    Elife; 2020 Nov; 9():. PubMed ID: 33236989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of CXCR4-Mediated Gi1 Activation by EGF Receptor and GRK2.
    Neves M; Perpiñá-Viciano C; Penela P; Hoffmann C; Mayor F
    ACS Pharmacol Transl Sci; 2020 Aug; 3(4):627-634. PubMed ID: 33073183
    [TBL] [Abstract][Full Text] [Related]  

  • 56. EGF Receptor Stalls upon Activation as Evidenced by Complementary Fluorescence Correlation Spectroscopy and Fluorescence Recovery after Photobleaching Measurements.
    Vámosi G; Friedländer-Brock E; Ibrahim SM; Brock R; Szöllősi J; Vereb G
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31323980
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model".
    Purba ER; Saita EI; Maruyama IN
    Cells; 2017 Jun; 6(2):. PubMed ID: 28574446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Epidermal Growth Factor Receptor Forms Location-Dependent Complexes in Resting Cells.
    Yavas S; Macháň R; Wohland T
    Biophys J; 2016 Nov; 111(10):2241-2254. PubMed ID: 27851946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oligomerization-function relationship of EGFR on living cells detected by the coiled-coil labeling and FRET microscopy.
    Yamashita H; Yano Y; Kawano K; Matsuzaki K
    Biochim Biophys Acta; 2015 Jun; 1848(6):1359-66. PubMed ID: 25771448
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.