These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2785209)

  • 1. Quantitative studies on ipsilateral type 2 retinotectotectal (IRTT) units in frogs: homologies with R3 ganglion cells.
    Garcia R; Gaillard F
    J Comp Physiol A; 1989 Jan; 164(3):377-89. PubMed ID: 2785209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The velocity function of ipsilateral visual units in the frog optic tectum: comparison with retinal ganglion cells.
    Gaillard F; Garcia R
    Neurosci Lett; 1986 Mar; 65(1):99-103. PubMed ID: 3486389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative stimulus-response studies on sustained ganglion cells in the frog retina.
    Garcia R; Gaillard F
    Vis Neurosci; 1989; 2(5):455-63. PubMed ID: 2487082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of ipsilateral retino-tectal (type I1) units of the frog (Rana esculenta) to moving configurational bars.
    Beauquin C; Poindessault JP; Gaillard F
    Comp Biochem Physiol A Physiol; 1995 Aug; 111(4):561-8. PubMed ID: 7671150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invariants in the ipsilateral retinotectal visual projection of frogs.
    Beauquin C; Gaillard F
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Jan; 122(1):99-107. PubMed ID: 10216935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of class R3 retinal ganglion cells of the frog to moving configurational bars: effect of the stimulus velocity.
    Beauquin C; Gaillard F
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):387-93. PubMed ID: 11253811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putative targets of direction-selective retinal ganglion cells in the tectum opticum of cyprinid fish.
    Damjanović I; Maximov PV; Aliper AT; Zaichikova AA; Gačić Z; Maximova EM
    Brain Res; 2019 Apr; 1708():20-26. PubMed ID: 30527677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Velocity sensitivity and directional selectivity of frog retinal ganglion cells depend on chromaticity of moving stimuli.
    Grüsser-Cornehls U; Langeveld S
    Brain Behav Evol; 1985; 27(2-4):165-85. PubMed ID: 3879890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant 'position indicators'.
    Tsai HJ; Ewert JP
    J Comp Physiol A; 1987 Aug; 161(2):295-304. PubMed ID: 3114477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Existence of a non-retinotopic contralateral retino-tectal visual projection in the normal frog Rana esculenta L].
    Gaillard F; Galand G
    C R Acad Hebd Seances Acad Sci D; 1978 Dec; 287(16):1405-8. PubMed ID: 114313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial distribution of excitation within the excitatory receptive field of ipsilateral visuotectal (type I1) units of frogs.
    Beauquin C; Gaillard F
    Naturwissenschaften; 1997 Nov; 84(11):511-3. PubMed ID: 9433707
    [No Abstract]   [Full Text] [Related]  

  • 12. Receptive field sizes of direction-selective units in the fish tectum.
    Damjanović I; Maximova E; Maximov V
    J Integr Neurosci; 2009 Mar; 8(1):77-93. PubMed ID: 19412981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of prenatal and neonatal monocular enucleation on visual topography in the uncrossed retinal pathway to the rat superior colliculus.
    Jeffery G; Thompson ID
    Exp Brain Res; 1986; 63(2):351-63. PubMed ID: 3758252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative electrophysiological studies of regenerating visuotopic maps in goldfish--I. Early recovery of dimming sensitivity in tectum and torus longitudinalis.
    Northmore DP
    Neuroscience; 1989; 32(3):739-47. PubMed ID: 2601842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect, across-the-midline retinotectal projections and representation of ipsilateral visual field in superior colliculus of the cat.
    Antonini A; Berlucchi G; Sprague JM
    J Neurophysiol; 1978 Mar; 41(2):285-304. PubMed ID: 650268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residual tectal projection from the contralateral central retina of the frog after homolateral optic nerve and main optic tract section. A possible input from the axial optic tract.
    Gaillard F
    Exp Brain Res; 1981; 44(3):277-86. PubMed ID: 6975723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurophysiological properties of the retinal ganglion cell classes of the Cuban treefrog, Hyla septentrionalis.
    Grüsser-Cornehls U
    Exp Brain Res; 1988; 73(1):39-52. PubMed ID: 3208860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New ipsilateral visual units in the frog tectum.
    Gaillard F; Galand G
    Brain Res; 1977 Nov; 136(2):351-4. PubMed ID: 303534
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of neonatal enucleation on receptive-field properties of visual neurons in superior colliculus of the golden hamster.
    Rhoades RW; Chalupa LM
    J Neurophysiol; 1980 Mar; 43(3):595-611. PubMed ID: 7373351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Discharges of neurons of the frog tectum during electric stimulation of individual retinal ganglion cells].
    Kuras AV; Khusainoviene NP
    Neirofiziologiia; 1984; 16(6):829-35. PubMed ID: 6097825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.