BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27852146)

  • 1. Metabolic profiles of pomalidomide in human plasma simulated with pharmacokinetic data in control and humanized-liver mice.
    Shimizu M; Suemizu H; Mitsui M; Shibata N; Guengerich FP; Yamazaki H
    Xenobiotica; 2017 Oct; 47(10):844-848. PubMed ID: 27852146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of pharmacokinetic profiles of lenalidomide in human plasma simulated using pharmacokinetic data in humanized-liver mice with liver toxicity detected by human serum albumin RNA.
    Murayama N; Suemizu H; Uehara S; Kusama T; Mitsui M; Kamiya Y; Shimizu M; Guengerich FP; Yamazaki H
    J Toxicol Sci; 2018; 43(6):369-375. PubMed ID: 29877213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Human Plasma Concentrations of Thalidomide and Primary 5-Hydroxylated Metabolites Explored with Pharmacokinetic Data in Humanized TK-NOG Mice.
    Nishiyama S; Suemizu H; Shibata N; Guengerich FP; Yamazaki H
    Chem Res Toxicol; 2015 Nov; 28(11):2088-90. PubMed ID: 26492539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice.
    Yamazaki-Nishioka M; Shimizu M; Suemizu H; Nishiwaki M; Mitsui M; Yamazaki H
    Xenobiotica; 2018 Feb; 48(2):117-123. PubMed ID: 28145791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo formation of dihydroxylated and glutathione conjugate metabolites derived from thalidomide and 5-Hydroxythalidomide in humanized TK-NOG mice.
    Yamazaki H; Suemizu H; Shimizu M; Igaya S; Shibata N; Nakamura M; Chowdhury G; Guengerich FP
    Chem Res Toxicol; 2012 Feb; 25(2):274-6. PubMed ID: 22268628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human plasma concentrations of cytochrome P450 probe cocktails extrapolated from pharmacokinetics in mice transplanted with human hepatocytes and from pharmacokinetics in common marmosets using physiologically based pharmacokinetic modeling.
    Utoh M; Suemizu H; Mitsui M; Kawano M; Toda A; Uehara S; Uno Y; Shimizu M; Sasaki E; Yamazaki H
    Xenobiotica; 2016 Dec; 46(12):1049-1055. PubMed ID: 26916082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacokinetics of primary metabolites 5-hydroxythalidomide and 5'-hydroxythalidomide formed after oral administration of thalidomide in the rabbit, a thalidomide-sensitive species.
    Kuwagata M; Hasegawa T; Takashima H; Shimizu M; Kitajima S; Yamazaki H
    J Toxicol Sci; 2021; 46(12):553-560. PubMed ID: 34853241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacokinetics of primary oxidative metabolites of thalidomide in rats and in chimeric mice humanized with different human hepatocytes.
    Miura T; Uehara S; Shimizu M; Suemizu H; Yamazaki H
    J Toxicol Sci; 2021; 46(7):311-317. PubMed ID: 34193768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human urine and plasma concentrations of bisphenol A extrapolated from pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and semi-physiological pharmacokinetic modeling.
    Miyaguchi T; Suemizu H; Shimizu M; Shida S; Nishiyama S; Takano R; Murayama N; Yamazaki H
    Regul Toxicol Pharmacol; 2015 Jun; 72(1):71-6. PubMed ID: 25805149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human cytochrome P450 oxidation of 5-hydroxythalidomide and pomalidomide, an amino analogue of thalidomide.
    Chowdhury G; Shibata N; Yamazaki H; Guengerich FP
    Chem Res Toxicol; 2014 Jan; 27(1):147-56. PubMed ID: 24350712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Chimeric Mice with Humanized Liver, Mass Spectrometry, and Physiologically-Based Pharmacokinetic Modeling in Toxicology.
    Yamazaki H; Suemizu H; Mitsui M; Shimizu M; Guengerich FP
    Chem Res Toxicol; 2016 Dec; 29(12):1903-1911. PubMed ID: 27337115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human plasma concentrations of trimethylamine N-oxide extrapolated using pharmacokinetic modeling based on metabolic profiles of deuterium-labeled trimethylamine in humanized-liver mice.
    Shimizu M; Suemizu H; Mizuno S; Kusama T; Miura T; Uehara S; Yamazaki H
    J Toxicol Sci; 2018; 43(6):387-393. PubMed ID: 29877215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug-drug interaction potential in vitro and in healthy subjects.
    Kasserra C; Assaf M; Hoffmann M; Li Y; Liu L; Wang X; Kumar G; Palmisano M
    J Clin Pharmacol; 2015 Feb; 55(2):168-78. PubMed ID: 25159194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo formation of a glutathione conjugate derived from thalidomide in humanized uPA-NOG mice.
    Yamazaki H; Suemizu H; Igaya S; Shimizu M; Shibata N; Nakamura M; Chowdhury G; Guengerich FP
    Chem Res Toxicol; 2011 Mar; 24(3):287-9. PubMed ID: 21299192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chimeric mice with humanized liver.
    Katoh M; Tateno C; Yoshizato K; Yokoi T
    Toxicology; 2008 Apr; 246(1):9-17. PubMed ID: 18248870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma concentrations of melengestrol acetate in humans extrapolated from the pharmacokinetics established in in vivo experiments with rats and chimeric mice with humanized liver and physiologically based pharmacokinetic modeling.
    Tsukada A; Suemizu H; Murayama N; Takano R; Shimizu M; Nakamura M; Yamazaki H
    Regul Toxicol Pharmacol; 2013 Apr; 65(3):316-24. PubMed ID: 23395687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome P450s in chimeric mice with humanized liver.
    Uehara S; Suemizu H; Yamazaki H
    Adv Pharmacol; 2022; 95():307-328. PubMed ID: 35953159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalidomide pharmacokinetics and metabolite formation in mice, rabbits, and multiple myeloma patients.
    Chung F; Lu J; Palmer BD; Kestell P; Browett P; Baguley BC; Tingle M; Ching LM
    Clin Cancer Res; 2004 Sep; 10(17):5949-56. PubMed ID: 15355928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of thalidomide in liver microsomes of mice, rabbits, and humans.
    Lu J; Helsby N; Palmer BD; Tingle M; Baguley BC; Kestell P; Ching LM
    J Pharmacol Exp Ther; 2004 Aug; 310(2):571-7. PubMed ID: 15075384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Protein Binding of 5-Hydroxythalidomide Bioactivated in Humanized Mice with Human P450 3A-Chromosome or Hepatocytes by Two-Dimensional Electrophoresis/Accelerator Mass Spectrometry.
    Yamazaki H; Suemizu H; Kazuki Y; Oofusa K; Kuribayashi S; Shimizu M; Ninomiya S; Horie T; Shibata N; Guengerich FP
    Chem Res Toxicol; 2016 Aug; 29(8):1279-81. PubMed ID: 27464947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.