These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27853265)

  • 1. Human CD133
    Aggarwal S; Grange C; Iampietro C; Camussi G; Bussolati B
    Sci Rep; 2016 Nov; 6():37270. PubMed ID: 27853265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury.
    Ranghino A; Bruno S; Bussolati B; Moggio A; Dimuccio V; Tapparo M; Biancone L; Gontero P; Frea B; Camussi G
    Stem Cell Res Ther; 2017 Feb; 8(1):24. PubMed ID: 28173878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfluorocarbon solutions limit tubular epithelial cell injury and promote CD133+ kidney progenitor differentiation: potential use in renal assist devices for sepsis-associated acute kidney injury and multiple organ failure.
    Cantaluppi V; Medica D; Quercia AD; Dellepiane S; Figliolini F; Virzì GM; Brocca A; Quaglia M; Marengo M; Olivieri C; Senzolo M; Garzotto F; Della Corte F; Castellano G; Gesualdo L; Camussi G; Ronco C
    Nephrol Dial Transplant; 2018 Jul; 33(7):1110-1121. PubMed ID: 29267971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice.
    Toyohara T; Mae S; Sueta S; Inoue T; Yamagishi Y; Kawamoto T; Kasahara T; Hoshina A; Toyoda T; Tanaka H; Araoka T; Sato-Otsubo A; Takahashi K; Sato Y; Yamaji N; Ogawa S; Yamanaka S; Osafune K
    Stem Cells Transl Med; 2015 Sep; 4(9):980-92. PubMed ID: 26198166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.
    Cakiroglu F; Enders-Comberg SM; Pagel H; Rohwedel J; Lehnert H; Kramer J
    Cell Biol Int; 2016 Mar; 40(3):298-307. PubMed ID: 26616141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of erythropoietin receptor activity on angiogenesis, tubular injury, and fibrosis in acute kidney injury: a "U-shaped" relationship.
    Shi M; Flores B; Li P; Gillings N; McMillan KL; Ye J; Huang LJ; Sidhu SS; Zhong YP; Grompe MT; Streeter PR; Moe OW; Hu MC
    Am J Physiol Renal Physiol; 2018 Apr; 314(4):F501-F516. PubMed ID: 29187371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cord blood CD133+ cells exacerbate ischemic acute kidney injury in mice.
    Burger D; Gutsol A; Carter A; Allan DS; Touyz RM; Burns KD
    Nephrol Dial Transplant; 2012 Oct; 27(10):3781-9. PubMed ID: 22561581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells.
    Cantaluppi V; Gatti S; Medica D; Figliolini F; Bruno S; Deregibus MC; Sordi A; Biancone L; Tetta C; Camussi G
    Kidney Int; 2012 Aug; 82(4):412-27. PubMed ID: 22495296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury.
    Angelotti ML; Ronconi E; Ballerini L; Peired A; Mazzinghi B; Sagrinati C; Parente E; Gacci M; Carini M; Rotondi M; Fogo AB; Lazzeri E; Lasagni L; Romagnani P
    Stem Cells; 2012 Aug; 30(8):1714-25. PubMed ID: 22628275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD133+ renal progenitor cells contribute to tumor angiogenesis.
    Bruno S; Bussolati B; Grange C; Collino F; Graziano ME; Ferrando U; Camussi G
    Am J Pathol; 2006 Dec; 169(6):2223-35. PubMed ID: 17148683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria transfer via tunneling nanotubes is an important mechanism by which CD133+ scattered tubular cells eliminate hypoxic tubular cell injury.
    Zou X; Hou Y; Xu J; Zhong L; Zhou J; Zhang G; Sun J
    Biochem Biophys Res Commun; 2020 Jan; 522(1):205-212. PubMed ID: 31759629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. R2: identification of renal potential progenitor/stem cells that participate in the renal regeneration processes of kidney allograft fibrosis.
    Bao J; Tu Z; Sun H; Luo G; Yang L; Song J; Qin M; Shi Y; Bu H; Li Y
    Nephrology (Carlton); 2008 Dec; 13(6):500-7. PubMed ID: 18363645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of renal progenitor cells from adult human kidney.
    Bussolati B; Bruno S; Grange C; Buttiglieri S; Deregibus MC; Cantino D; Camussi G
    Am J Pathol; 2005 Feb; 166(2):545-55. PubMed ID: 15681837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMP-2 induces a profibrotic phenotype in adult renal progenitor cells through Nox4 activation.
    Simone S; Cosola C; Loverre A; Cariello M; Sallustio F; Rascio F; Gesualdo L; Schena FP; Grandaliano G; Pertosa G
    Am J Physiol Renal Physiol; 2012 Jul; 303(1):F23-34. PubMed ID: 22496405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Premobilization of CD133+ cells by granulocyte colony- stimulating factor attenuates ischemic acute kidney injury induced by cardiopulmonary bypass.
    Li X; Wan Q; Min J; Duan L; Liu J
    Sci Rep; 2019 Feb; 9(1):2470. PubMed ID: 30792422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure.
    Lazzeri E; Crescioli C; Ronconi E; Mazzinghi B; Sagrinati C; Netti GS; Angelotti ML; Parente E; Ballerini L; Cosmi L; Maggi L; Gesualdo L; Rotondi M; Annunziato F; Maggi E; Lasagni L; Serio M; Romagnani S; Vannelli GB; Romagnani P
    J Am Soc Nephrol; 2007 Dec; 18(12):3128-38. PubMed ID: 17978305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-Aminolevulinic acid exerts renoprotective effect via Nrf2 activation in murine rhabdomyolysis-induced acute kidney injury.
    Uchida A; Kidokoro K; Sogawa Y; Itano S; Nagasu H; Satoh M; Sasaki T; Kashihara N
    Nephrology (Carlton); 2019 Jan; 24(1):28-38. PubMed ID: 29068550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epithelial-mesenchymal transition of renal tubules: divergent processes of repairing in acute or chronic injury?
    Jiang YS; Jiang T; Huang B; Chen PS; Ouyang J
    Med Hypotheses; 2013 Jul; 81(1):73-5. PubMed ID: 23601763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased progression to kidney fibrosis after erythropoietin is used as a treatment for acute kidney injury.
    Gobe GC; Bennett NC; West M; Colditz P; Brown L; Vesey DA; Johnson DW
    Am J Physiol Renal Physiol; 2014 Mar; 306(6):F681-92. PubMed ID: 24402097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Cycle Arrest as a Therapeutic Target of Acute Kidney Injury.
    Wang WG; Sun WX; Gao BS; Lian X; Zhou HL
    Curr Protein Pept Sci; 2017; 18(12):1224-1231. PubMed ID: 27634440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.