BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27853417)

  • 1. A Mouse Model for Binge-Level Methamphetamine Use.
    Shabani S; Houlton SK; Hellmuth L; Mojica E; Mootz JR; Zhu Z; Reed C; Phillips TJ
    Front Neurosci; 2016; 10():493. PubMed ID: 27853417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methamphetamine drinking microstructure in mice bred to drink high or low amounts of methamphetamine.
    Eastwood EC; Barkley-Levenson AM; Phillips TJ
    Behav Brain Res; 2014 Oct; 272():111-20. PubMed ID: 24978098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depression-like symptoms of withdrawal in a genetic mouse model of binge methamphetamine intake.
    Shabani S; Schmidt B; Ghimire B; Houlton SK; Hellmuth L; Mojica E; Phillips TJ
    Genes Brain Behav; 2019 Mar; 18(3):e12533. PubMed ID: 30375183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-genetic factors that influence methamphetamine intake in a genetic model of differential methamphetamine consumption.
    Stafford AM; Reed C; Phillips TJ
    Psychopharmacology (Berl); 2020 Nov; 237(11):3315-3336. PubMed ID: 32833064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired memory and reduced sensitivity to the circadian period lengthening effects of methamphetamine in mice selected for high methamphetamine consumption.
    Olsen RH; Allen CN; Derkach VA; Phillips TJ; Belknap JK; Raber J
    Behav Brain Res; 2013 Nov; 256():197-204. PubMed ID: 23954232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opioid sensitivity in mice selectively bred to consume or not consume methamphetamine.
    Eastwood EC; Phillips TJ
    Addict Biol; 2014 May; 19(3):370-9. PubMed ID: 23145527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification of a genetic locus for methamphetamine intake and the impact of morphine.
    Eastwood EC; Eshleman AJ; Janowsky A; Phillips TJ
    Mamm Genome; 2018 Apr; 29(3-4):260-272. PubMed ID: 29127441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity to rewarding or aversive effects of methamphetamine determines methamphetamine intake.
    Shabani S; McKinnon CS; Reed C; Cunningham CL; Phillips TJ
    Genes Brain Behav; 2011 Aug; 10(6):625-36. PubMed ID: 21554535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential genetic risk for methamphetamine intake confers differential sensitivity to the temperature-altering effects of other addictive drugs.
    Mootz JRK; Miner NB; Phillips TJ
    Genes Brain Behav; 2020 Jun; 19(5):e12640. PubMed ID: 31925906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace Amine-Associated Receptor 1 Regulation of Methamphetamine Intake and Related Traits.
    Harkness JH; Shi X; Janowsky A; Phillips TJ
    Neuropsychopharmacology; 2015 Aug; 40(9):2175-84. PubMed ID: 25740289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profound reduction in sensitivity to the aversive effects of methamphetamine in mice bred for high methamphetamine intake.
    Shabani S; McKinnon CS; Cunningham CL; Phillips TJ
    Neuropharmacology; 2012 Feb; 62(2):1134-41. PubMed ID: 22118879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A breeding strategy to identify modifiers of high genetic risk for methamphetamine intake.
    Reed C; Stafford AM; Mootz JRK; Baba H; Erk J; Phillips TJ
    Genes Brain Behav; 2021 Feb; 20(2):e12667. PubMed ID: 32424970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation.
    Lominac KD; McKenna CL; Schwartz LM; Ruiz PN; Wroten MG; Miller BW; Holloway JJ; Travis KO; Rajasekar G; Maliniak D; Thompson AB; Urman LE; Phillips TJ; Szumlinski KK
    Front Syst Neurosci; 2014; 8():70. PubMed ID: 24847220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prefrontal glutamate correlates of methamphetamine sensitization and preference.
    Lominac KD; Quadir SG; Barrett HM; McKenna CL; Schwartz LM; Ruiz PN; Wroten MG; Campbell RR; Miller BW; Holloway JJ; Travis KO; Rajasekar G; Maliniak D; Thompson AB; Urman LE; Kippin TE; Phillips TJ; Szumlinski KK
    Eur J Neurosci; 2016 Mar; 43(5):689-702. PubMed ID: 26742098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel Effects of Methamphetamine on Anxiety and CCL3 in Humans and a Genetic Mouse Model of High Methamphetamine Intake.
    Huckans M; Wilhelm CJ; Phillips TJ; Huang ET; Hudson R; Loftis JM
    Neuropsychobiology; 2017; 75(4):169-177. PubMed ID: 29402784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically correlated effects of selective breeding for high and low methamphetamine consumption.
    Wheeler JM; Reed C; Burkhart-Kasch S; Li N; Cunningham CL; Janowsky A; Franken FH; Wiren KM; Hashimoto JG; Scibelli AC; Phillips TJ
    Genes Brain Behav; 2009 Nov; 8(8):758-71. PubMed ID: 19689456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Spontaneous Mutation in
    Reed C; Baba H; Zhu Z; Erk J; Mootz JR; Varra NM; Williams RW; Phillips TJ
    Front Pharmacol; 2017; 8():993. PubMed ID: 29403379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prior binge-drinking history promotes the positive affective valence of methamphetamine in mice.
    Fultz EK; Szumlinski KK
    Drug Alcohol Depend; 2018 Feb; 183():150-154. PubMed ID: 29253796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methamphetamine-alcohol interactions in murine models of sequential and simultaneous oral drug-taking.
    Fultz EK; Martin DL; Hudson CN; Kippin TE; Szumlinski KK
    Drug Alcohol Depend; 2017 Aug; 177():178-186. PubMed ID: 28601731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An animal model of differential genetic risk for methamphetamine intake.
    Phillips TJ; Shabani S
    Front Neurosci; 2015; 9():327. PubMed ID: 26441502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.