These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27853450)

  • 1. Antifungal
    Human ZR; Moon K; Bae M; de Beer ZW; Cha S; Wingfield MJ; Slippers B; Oh DC; Venter SN
    Front Microbiol; 2016; 7():1657. PubMed ID: 27853450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodiversity and ecology of flower-associated actinomycetes in different flowering stages of Protea repens.
    Human ZR; Crous CJ; Roets F; Venter SN; Wingfield MJ; de Beer ZW
    Antonie Van Leeuwenhoek; 2018 Feb; 111(2):209-226. PubMed ID: 28936706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-gene phylogeny for Ophiostoma spp. reveals two new species from Protea infructescences.
    Roets F; de Beer ZW; Dreyer LL; Zipfel R; Crous PW; Wingfield MJ
    Stud Mycol; 2006; 55():199-212. PubMed ID: 18490980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ophiostoma gemellus and Sporothrix variecibatus from mites infesting Protea infructescences in South Africa.
    Roets F; de Beer ZW; Wingfield MJ; Crous PW; Dreyer LL
    Mycologia; 2008; 100(3):496-510. PubMed ID: 18751556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early colonization of Protea flowers enable dominance of competitively weak saprobic fungi in seed cones, benefitting their hosts.
    Mukwevho VO; Dreyer LL; Roets F
    Fungal Biol; 2022 Feb; 126(2):122-131. PubMed ID: 35078583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two new Sporothrix species from Protea flower heads in South African Grassland and Savanna.
    Ngubane NP; Dreyer LL; Oberlander KC; Roets F
    Antonie Van Leeuwenhoek; 2018 Jun; 111(6):965-979. PubMed ID: 29214366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungichromin production by Streptomyces sp. WP-1, an endophyte from Pinus dabeshanensis, and its antifungal activity against Fusarium oxysporum.
    Peng C; An D; Ding WX; Zhu YX; Ye L; Li J
    Appl Microbiol Biotechnol; 2020 Dec; 104(24):10437-10449. PubMed ID: 33170328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mite-mediated hyperphoretic dispersal of Ophiostoma spp. from the infructescences of South African Protea spp.
    Roets F; Crous PW; Wingfield MJ; Dreyer LL
    Environ Entomol; 2009 Feb; 38(1):143-52. PubMed ID: 19791608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fire impacts bacterial composition in Protea repens (Proteaceae) infructescences.
    Human ZR; Roets F; Crous CJ; Wingfield MJ; de Beer ZW; Venter SN
    FEMS Microbiol Lett; 2021 Oct; 368(19):. PubMed ID: 34626182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Birds Mediate a Fungus-Mite Mutualism.
    Theron-De Bruin N; Dreyer LL; Ueckermann EA; Wingfield MJ; Roets F
    Microb Ecol; 2018 May; 75(4):863-874. PubMed ID: 29071368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotic and abiotic constraints that facilitate host exclusivity of Gondwanamyces and Ophiostoma on Protea.
    Roets F; Theron N; Wingfield MJ; Dreyer LL
    Fungal Biol; 2012 Jan; 116(1):49-61. PubMed ID: 22208601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal pathogens of Proteaceae.
    Crous PW; Summerell BA; Swart L; Denman S; Taylor JE; Bezuidenhout CM; Palm ME; Marincowitz S; Groenewald JZ
    Persoonia; 2011 Dec; 27():20-45. PubMed ID: 22403475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence of ecologically similar fungi in a restricted floral niche.
    Mukwevho VO; Dreyer LL; Roets F
    Antonie Van Leeuwenhoek; 2022 Jun; 115(6):761-771. PubMed ID: 35389142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic antifungal activity and potential mechanism of action of a glycolipid-like compound produced by Streptomyces blastmyceticus S108 against Candida clinical isolates.
    Ayed A; Essid R; Mankai H; Echmar A; Fares N; Hammami M; Sewald N; Limam F; Tabbene O
    J Appl Microbiol; 2023 Nov; 134(11):. PubMed ID: 37884451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal potential of bacterial rhizosphere isolates associated with three ethno-medicinal plants (poppy, chamomile, and nettle).
    Mojicevic M; D'Agostino PM; Nikodinovic-Runic J; Vasiljevic B; Gulder TAM; Vojnovic S
    Int Microbiol; 2019 Sep; 22(3):343-353. PubMed ID: 30810997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-polyenic antifungal produced by a Streptomyces yatensis strain isolated from Mellah Lake in El Kala, North-East of Algeria.
    Benouagueni S; Ranque S; Gacemi Kirane D
    J Mycol Med; 2015 Mar; 25(1):2-10. PubMed ID: 25458364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of fungus-mite mutualism in a unique niche.
    Roets F; Wingfield MJ; Crous PW; Dreyer LL
    Environ Entomol; 2007 Oct; 36(5):1226-37. PubMed ID: 18284748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonist activities and phylogenetic relationships of actinomycetes isolated from an Artemisia habitat.
    Gonzalez-Franco AC; Robles-Hernández L
    Rev Argent Microbiol; 2022; 54(4):326-334. PubMed ID: 35725666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxonomic Characterizations of Soil
    Sheik GB; Alhumaidy AA; Abdel Raheim AIA; Alzeyadi ZA; AlGhonaim MI
    J Pharm Bioallied Sci; 2020; 12(4):462-467. PubMed ID: 33679094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease.
    Intra B; Mungsuntisuk I; Nihira T; Igarashi Y; Panbangred W
    BMC Res Notes; 2011 Apr; 4():98. PubMed ID: 21457542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.