These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 27853482)
1. Improving carbon monitoring and reporting in forests using spatially-explicit information. Boisvenue C; Smiley BP; White JC; Kurz WA; Wulder MA Carbon Balance Manag; 2016 Dec; 11(1):23. PubMed ID: 27853482 [TBL] [Abstract][Full Text] [Related]
2. Climate change mitigation in Canada's forest sector: a spatially explicit case study for two regions. Smyth CE; Smiley BP; Magnan M; Birdsey R; Dugan AJ; Olguin M; Mascorro VS; Kurz WA Carbon Balance Manag; 2018 Sep; 13(1):11. PubMed ID: 30187146 [TBL] [Abstract][Full Text] [Related]
3. Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates. Mascorro VS; Coops NC; Kurz WA; Olguín M Carbon Balance Manag; 2015 Dec; 10(1):30. PubMed ID: 26705411 [TBL] [Abstract][Full Text] [Related]
4. Operational assessment tool for forest carbon dynamics for the United States: a new spatially explicit approach linking the LUCAS and CBM-CFS3 models. Sleeter BM; Frid L; Rayfield B; Daniel C; Zhu Z; Marvin DC Carbon Balance Manag; 2022 Feb; 17(1):1. PubMed ID: 35107646 [TBL] [Abstract][Full Text] [Related]
5. Modelling forest carbon stock changes as affected by harvest and natural disturbances. II. EU-level analysis. Pilli R; Grassi G; Kurz WA; Moris JV; Viñas RA Carbon Balance Manag; 2016 Dec; 11(1):20. PubMed ID: 27635153 [TBL] [Abstract][Full Text] [Related]
6. A systems approach to assess climate change mitigation options in landscapes of the United States forest sector. Dugan AJ; Birdsey R; Mascorro VS; Magnan M; Smyth CE; Olguin M; Kurz WA Carbon Balance Manag; 2018 Sep; 13(1):13. PubMed ID: 30182168 [TBL] [Abstract][Full Text] [Related]
7. Climate change mitigation in British Columbia's forest sector: GHG reductions, costs, and environmental impacts. Smyth CE; Xu Z; Lemprière TC; Kurz WA Carbon Balance Manag; 2020 Oct; 15(1):21. PubMed ID: 33001303 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal dynamics of forest ecosystem carbon budget in Guizhou: customisation and application of the CBM-CFS3 model for China. Tang Y; Shao Q; Shi T; Lu Z; Wu G Carbon Balance Manag; 2022 Jul; 17(1):10. PubMed ID: 35779178 [TBL] [Abstract][Full Text] [Related]
9. Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Kurz WA; Stinson G; Rampley GJ; Dymond CC; Neilson ET Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1551-5. PubMed ID: 18230736 [TBL] [Abstract][Full Text] [Related]
10. A national assessment of urban forest carbon storage and sequestration in Canada. Steenberg JWN; Ristow M; Duinker PN; Lapointe-Elmrabti L; MacDonald JD; Nowak DJ; Pasher J; Flemming C; Samson C Carbon Balance Manag; 2023 Jul; 18(1):11. PubMed ID: 37422567 [TBL] [Abstract][Full Text] [Related]
11. Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: A spatially explicit carbon bookkeeping model. Tang X; Hutyra LR; Arévalo P; Baccini A; Woodcock CE; Olofsson P Sci Total Environ; 2020 Jun; 720():137409. PubMed ID: 32145612 [TBL] [Abstract][Full Text] [Related]
12. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. Vanhala P; Bergström I; Haaspuro T; Kortelainen P; Holmberg M; Forsius M Sci Total Environ; 2016 Jul; 557-558():51-7. PubMed ID: 26994793 [TBL] [Abstract][Full Text] [Related]
13. Carbon dynamics on agricultural land reverting to woody land in Ontario, Canada. Voicu MF; Shaw C; Kurz WA; Huffman T; Liu J; Fellows M J Environ Manage; 2017 May; 193():318-325. PubMed ID: 28235731 [TBL] [Abstract][Full Text] [Related]
14. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Wulder MA; White JC; Fournier RA; Luther JE; Magnussen S Sensors (Basel); 2008 Jan; 8(1):529-560. PubMed ID: 27879721 [TBL] [Abstract][Full Text] [Related]
15. Modelling forest carbon stock changes as affected by harvest and natural disturbances. I. Comparison with countries' estimates for forest management. Pilli R; Grassi G; Kurz WA; Viñas RA; Guerrero NH Carbon Balance Manag; 2016 Dec; 11(1):5. PubMed ID: 27340427 [TBL] [Abstract][Full Text] [Related]
16. Sources and sinks of greenhouse gases in the landscape: Approach for spatially explicit estimates. Holmberg M; Akujärvi A; Anttila S; Autio I; Haakana M; Junttila V; Karvosenoja N; Kortelainen P; Mäkelä A; Minkkinen K; Minunno F; Rankinen K; Ojanen P; Paunu VV; Peltoniemi M; Rasilo T; Sallantaus T; Savolahti M; Tuominen S; Tuominen S; Vanhala P; Forsius M Sci Total Environ; 2021 Aug; 781():146668. PubMed ID: 33794457 [TBL] [Abstract][Full Text] [Related]
17. Forest carbon stock development following extreme drought-induced dieback of coniferous stands in Central Europe: a CBM-CFS3 model application. Cienciala E; Melichar J Carbon Balance Manag; 2024 Jan; 19(1):1. PubMed ID: 38170292 [TBL] [Abstract][Full Text] [Related]
18. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010. Song XP; Huang C; Saatchi SS; Hansen MC; Townshend JR PLoS One; 2015; 10(5):e0126754. PubMed ID: 25951328 [TBL] [Abstract][Full Text] [Related]
20. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.]. Liu BJ; Lu F; Wang XK; Liu WW Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):673-688. PubMed ID: 29749178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]