These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27853484)

  • 1. Filtered circular fingerprints improve either prediction or runtime performance while retaining interpretability.
    Gütlein M; Kramer S
    J Cheminform; 2016; 8():60. PubMed ID: 27853484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints.
    Fassio AV; Shub L; Ponzoni L; McKinley J; O'Meara MJ; Ferreira RS; Keiser MJ; de Melo Minardi RC
    J Chem Inf Model; 2022 Sep; 62(18):4300-4318. PubMed ID: 36102784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.
    Awale M; Jin X; Reymond JL
    J Cheminform; 2015; 7():3. PubMed ID: 25750664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChemoPy: freely available python package for computational biology and chemoinformatics.
    Cao DS; Xu QS; Hu QN; Liang YZ
    Bioinformatics; 2013 Apr; 29(8):1092-4. PubMed ID: 23493324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Prediction of CYP-Mediated Metabolism with Chemical Fingerprints.
    Zaretzki J; Boehm KM; Swamidass SJ
    J Chem Inf Model; 2015 May; 55(5):972-82. PubMed ID: 25871613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation.
    Dong J; Cao DS; Miao HY; Liu S; Deng BC; Yun YH; Wang NN; Lu AP; Zeng WB; Chen AF
    J Cheminform; 2015; 7():60. PubMed ID: 26664458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability.
    Laufkötter O; Sturm N; Bajorath J; Chen H; Engkvist O
    J Cheminform; 2019 Aug; 11(1):54. PubMed ID: 31396716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the fingerprint descriptor dependence of structure-activity relationship information on a large scale.
    Dimova D; Stumpfe D; Bajorath J
    J Chem Inf Model; 2013 Sep; 53(9):2275-81. PubMed ID: 23968259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural networks prediction of the protein-ligand binding affinity with circular fingerprints.
    Yin Z; Song W; Li B; Wang F; Xie L; Xu X
    Technol Health Care; 2023; 31(S1):487-495. PubMed ID: 37066944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction and recombination of fingerprints of different design increase compound recall and the structural diversity of hits.
    Nisius B; Bajorath J
    Chem Biol Drug Des; 2010 Feb; 75(2):152-60. PubMed ID: 20028390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rendering conventional molecular fingerprints for virtual screening independent of molecular complexity and size effects.
    Nisius B; Bajorath J
    ChemMedChem; 2010 Jun; 5(6):859-68. PubMed ID: 20425878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Sep; 51(9):2254-65. PubMed ID: 21793563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concepts and applications of chemical fingerprint for hit and lead screening.
    Yang J; Cai Y; Zhao K; Xie H; Chen X
    Drug Discov Today; 2022 Nov; 27(11):103356. PubMed ID: 36113834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Average Information Content Maximization--A New Approach for Fingerprint Hybridization and Reduction.
    Śmieja M; Warszycki D
    PLoS One; 2016; 11(1):e0146666. PubMed ID: 26784447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the information content of structural and protein-ligand interaction representations for the classification of kinase inhibitor binding modes via machine learning and active learning.
    Rodríguez-Pérez R; Miljković F; Bajorath J
    J Cheminform; 2020 May; 12(1):36. PubMed ID: 33431025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Local Models to Improve (Q)SAR Predictivity.
    Buchwald F; Girschick T; Seeland M; Kramer S
    Mol Inform; 2011 Mar; 30(2-3):205-18. PubMed ID: 27466774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating molecular representations in machine learning models for drug response prediction and interpretability.
    Baptista D; Correia J; Pereira B; Rocha M
    J Integr Bioinform; 2022 Sep; 19(3):. PubMed ID: 36017668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How similar are similarity searching methods? A principal component analysis of molecular descriptor space.
    Bender A; Jenkins JL; Scheiber J; Sukuru SC; Glick M; Davies JW
    J Chem Inf Model; 2009 Jan; 49(1):108-19. PubMed ID: 19123924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RelACCS-FP: a structural minimalist approach to fingerprint design.
    Hu Y; Lounkine E; Batista J; Bajorath J
    Chem Biol Drug Des; 2008 Nov; 72(5):341-9. PubMed ID: 19012570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filtering and counting of extended connectivity fingerprint features maximizes compound recall and the structural diversity of hits.
    Hu Y; Lounkine E; Bajorath J
    Chem Biol Drug Des; 2009 Jul; 74(1):92-8. PubMed ID: 19519749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.