These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 27853668)

  • 1. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 2. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
    Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM
    J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The improvement of the lower limb exoskeletons on the gait of patients with spinal cord injury: A protocol for systematic review and meta-analysis.
    Xue X; Yang X; Tu H; Liu W; Kong D; Fan Z; Deng Z; Li N
    Medicine (Baltimore); 2022 Jan; 101(4):e28709. PubMed ID: 35089234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial.
    Rodríguez-Fernández A; Lobo-Prat J; Tarragó R; Chaverri D; Iglesias X; Guirao-Cano L; Font-Llagunes JM
    Sci Rep; 2022 Nov; 12(1):19150. PubMed ID: 36351989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients.
    Jansen O; Grasmuecke D; Meindl RC; Tegenthoff M; Schwenkreis P; Sczesny-Kaiser M; Wessling M; Schildhauer TA; Fisahn C; Aach M
    World Neurosurg; 2018 Feb; 110():e73-e78. PubMed ID: 29081392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects.
    Tamburella F; Tagliamonte NL; Masciullo M; Pisotta I; Arquilla M; van Asseldonk EHF; van der Kooij H; Wu AR; Dzeladini F; Ijspeert AJ; Molinari M
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):147-164. Technology in Medicine. PubMed ID: 33386045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability.
    Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E
    Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Robot therapy with the H2 exoskeleton for gait rehabilitation in patients with incomplete spinal cord injry. A clinical experience].
    Gil-Agudo A; Del Ama-Espinosa AJ; Lozano-Berrio V; Fernández-López A; Megía García-Carpintero A; Benito-Penalva J; Pons JL
    Rehabilitacion (Madr); 2020; 54(2):87-95. PubMed ID: 32370833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study.
    Benson I; Hart K; Tussler D; van Middendorp JJ
    Clin Rehabil; 2016 Jan; 30(1):73-84. PubMed ID: 25761635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of locomotor training after incomplete spinal cord injury: a systematic review.
    Morawietz C; Moffat F
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2297-308. PubMed ID: 23850614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.
    Louie DR; Eng JJ
    J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility, safety, and functional outcomes using the neurological controlled Hybrid Assistive Limb exoskeleton (HAL®) following acute incomplete and complete spinal cord injury - Results of 50 patients.
    Aach M; Schildhauer TA; Zieriacks A; Jansen O; Weßling M; Brinkemper A; Grasmücke D
    J Spinal Cord Med; 2023 Jul; 46(4):574-581. PubMed ID: 37083596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.