These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27854023)

  • 21. Application of the chromatin immunoprecipitation method to identify in vivo protein-DNA associations in fission yeast.
    Takahashi K; Saitoh S; Yanagida M
    Sci STKE; 2000 Oct; 2000(56):pl1. PubMed ID: 11752617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wdr70 regulates histone modification and genomic maintenance in fission yeast.
    Zeng M; Tang Z; Guo L; Wang X; Liu C
    Biochim Biophys Acta Mol Cell Res; 2020 May; 1867(5):118665. PubMed ID: 32007529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Profiling RNA Polymerase II Phosphorylation Genome-Wide in Fission Yeast.
    Kecman T; Heo DH; Vasiljeva L
    Methods Enzymol; 2018; 612():489-504. PubMed ID: 30502955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin.
    Svensson JP; Shukla M; Menendez-Benito V; Norman-Axelsson U; Audergon P; Sinha I; Tanny JC; Allshire RC; Ekwall K
    Genome Res; 2015 Jun; 25(6):872-83. PubMed ID: 25778913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin Immunoprecipitation for Analyzing Transcription Factor Binding and Histone Modifications in Drosophila.
    Ghavi-Helm Y; Zhao B; Furlong EE
    Methods Mol Biol; 2016; 1478():263-277. PubMed ID: 27730588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast.
    Yang H; Kwon CS; Choi Y; Lee D
    Biochem Biophys Res Commun; 2016 Aug; 476(4):515-521. PubMed ID: 27268234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Chromatin-Binding Assay Using Epifluorescent Microscopy in S. pombe.
    Yang J; Li F
    Methods Mol Biol; 2018; 1721():155-165. PubMed ID: 29423855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of Histone Modifications in Acute Myeloid Leukaemia Using Chromatin Immunoprecipitation.
    Shields BJ; Keniry A; Blewitt ME; McCormack MP
    Methods Mol Biol; 2018; 1725():177-184. PubMed ID: 29322418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Native ChIP: Studying the Genome-Wide Distribution of Histone Modifications in Cells and Tissue.
    Nitsch S; Schneider R
    Methods Mol Biol; 2024; 2846():1-16. PubMed ID: 39141226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaving histone unturned for epigenetic inheritance.
    Shan CM; Fang Y; Jia S
    FEBS J; 2023 Jan; 290(2):310-320. PubMed ID: 34726351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method.
    Zhou ZX; Zhang MJ; Peng X; Takayama Y; Xu XY; Huang LZ; Du LL
    Genome Res; 2013 Apr; 23(4):705-15. PubMed ID: 23249883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Spiking Strategy for ChIP-chip Data Normalization in S. cerevisiae.
    Jeronimo C; Robert F
    Methods Mol Biol; 2017; 1528():211-227. PubMed ID: 27854024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myb-domain protein Teb1 controls histone levels and centromere assembly in fission yeast.
    Valente LP; Dehé PM; Klutstein M; Aligianni S; Watt S; Bähler J; Cooper JP
    EMBO J; 2013 Feb; 32(3):450-60. PubMed ID: 23314747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo.
    Pillai S; Dasgupta P; Chellappan SP
    Methods Mol Biol; 2009; 523():323-39. PubMed ID: 19381928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deconvolution of chromatin immunoprecipitation-microarray (ChIP-chip) analysis of MBF occupancies reveals the temporal recruitment of Rep2 at the MBF target genes.
    Eshaghi M; Zhu L; Chu Z; Li J; Chan CS; Shahab A; Karuturi RK; Liu J
    Eukaryot Cell; 2011 Jan; 10(1):130-41. PubMed ID: 21076007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Epigenetic Histone Activation/Repression Marks in Sequences of Genes by Chromatin Immunoprecipitation-Quantitative Polymerase Chain Reaction (ChIP-qPCR).
    Bhatia S; Matthews J; Wells PG
    Methods Mol Biol; 2019; 1965():389-403. PubMed ID: 31069688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Rapid and Efficient ChIP Protocol to Profile Chromatin Binding Proteins and Epigenetic Modifications in Arabidopsis.
    Desvoyes B; Vergara Z; Sequeira-Mendes J; Madeira S; Gutierrez C
    Methods Mol Biol; 2018; 1675():71-82. PubMed ID: 29052186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcription-coupled changes to chromatin underpin gene silencing by transcriptional interference.
    Ard R; Allshire RC
    Nucleic Acids Res; 2016 Dec; 44(22):10619-10630. PubMed ID: 27613421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro chromatin immunoprecipitation (μChIP) from early mammalian embryos.
    Dahl JA; Klungland A
    Methods Mol Biol; 2015; 1222():227-45. PubMed ID: 25287350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromatin immunoprecipitation protocol for histone modifications and protein-DNA binding analyses in Arabidopsis.
    Pien S; Grossniklaus U
    Methods Mol Biol; 2010; 631():209-20. PubMed ID: 20204877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.