BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 27854216)

  • 1. Therapeutic Potential of Tricyclo-DNA antisense oligonucleotides.
    Goyenvalle A; Leumann C; Garcia L
    J Neuromuscul Dis; 2016 May; 3(2):157-167. PubMed ID: 27854216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New developments in exon skipping and splice modulation therapies for neuromuscular diseases.
    Touznik A; Lee JJ; Yokota T
    Expert Opin Biol Ther; 2014 Jun; 14(6):809-19. PubMed ID: 24620745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational development of splice-modifying antisense oligomers.
    Fletcher S; Bellgard MI; Price L; Akkari AP; Wilton SD
    Expert Opin Biol Ther; 2017 Jan; 17(1):15-30. PubMed ID: 27805416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease.
    Sardone V; Zhou H; Muntoni F; Ferlini A; Falzarano MS
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28379182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Tricyclo-DNA Antisense Oligonucleotides for Exon Skipping.
    Relizani K; Goyenvalle A
    Methods Mol Biol; 2018; 1828():381-394. PubMed ID: 30171555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in therapeutic antisense applications for neuromuscular disorders.
    Aartsma-Rus A; van Ommen GJ
    Eur J Hum Genet; 2010 Feb; 18(2):146-53. PubMed ID: 19809477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping.
    Li D; Mastaglia FL; Fletcher S; Wilton SD
    Trends Pharmacol Sci; 2018 Nov; 39(11):982-994. PubMed ID: 30282590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold?
    Guncay A; Yokota T
    Future Med Chem; 2015; 7(13):1631-5. PubMed ID: 26423833
    [No Abstract]   [Full Text] [Related]  

  • 9. Antisense-mediated exon skipping: taking advantage of a trick from Mother Nature to treat rare genetic diseases.
    Veltrop M; Aartsma-Rus A
    Exp Cell Res; 2014 Jul; 325(1):50-5. PubMed ID: 24486759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Exon skipping approach to Duchenne muscular dystorphy].
    Takeda S
    Rinsho Shinkeigaku; 2014; 54(12):1071-3. PubMed ID: 25672711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic therapies for inherited neuromuscular disorders.
    Scoto M; Finkel R; Mercuri E; Muntoni F
    Lancet Child Adolesc Health; 2018 Aug; 2(8):600-609. PubMed ID: 30119719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Impact of Variable Phosphorothioate Content in Tricyclo-DNA Antisense Oligonucleotides in a Duchenne Muscular Dystrophy Mouse Model.
    Echevarría L; Aupy P; Relizani K; Bestetti T; Griffith G; Blandel F; Komisarski M; Haeberli A; Svinartchouk F; Garcia L; Goyenvalle A
    Nucleic Acid Ther; 2019 Jun; 29(3):148-160. PubMed ID: 31009315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications.
    Aartsma-Rus A; van Ommen GJ
    RNA; 2007 Oct; 13(10):1609-24. PubMed ID: 17684229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers.
    Goyenvalle A; Griffith G; Babbs A; El Andaloussi S; Ezzat K; Avril A; Dugovic B; Chaussenot R; Ferry A; Voit T; Amthor H; Bühr C; Schürch S; Wood MJ; Davies KE; Vaillend C; Leumann C; Garcia L
    Nat Med; 2015 Mar; 21(3):270-5. PubMed ID: 25642938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [RNA splicing modulation: Therapeutic progress and perspectives].
    Saoudi A; Goyenvalle A
    Med Sci (Paris); 2021; 37(6-7):625-631. PubMed ID: 34180822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward an oligonucleotide therapy for Duchenne muscular dystrophy: a complex development challenge.
    Wood MJ
    Sci Transl Med; 2010 Mar; 2(25):25ps15. PubMed ID: 20424011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides.
    Echigoya Y; Yokota T
    Nucleic Acid Ther; 2014 Feb; 24(1):57-68. PubMed ID: 24380394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The therapeutic potential of antisense-mediated exon skipping.
    van Ommen GJ; van Deutekom J; Aartsma-Rus A
    Curr Opin Mol Ther; 2008 Apr; 10(2):140-9. PubMed ID: 18386226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic neuromuscular disorders: living the era of a therapeutic revolution. Part 2: diseases of motor neuron and skeletal muscle.
    Vita G; Vita GL; Musumeci O; Rodolico C; Messina S
    Neurol Sci; 2019 Apr; 40(4):671-681. PubMed ID: 30805745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.