These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Use of Tricyclo-DNA Antisense Oligonucleotides for Exon Skipping. Relizani K; Goyenvalle A Methods Mol Biol; 2018; 1828():381-394. PubMed ID: 30171555 [TBL] [Abstract][Full Text] [Related]
6. Progress in therapeutic antisense applications for neuromuscular disorders. Aartsma-Rus A; van Ommen GJ Eur J Hum Genet; 2010 Feb; 18(2):146-53. PubMed ID: 19809477 [TBL] [Abstract][Full Text] [Related]
7. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping. Li D; Mastaglia FL; Fletcher S; Wilton SD Trends Pharmacol Sci; 2018 Nov; 39(11):982-994. PubMed ID: 30282590 [TBL] [Abstract][Full Text] [Related]
8. Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold? Guncay A; Yokota T Future Med Chem; 2015; 7(13):1631-5. PubMed ID: 26423833 [No Abstract] [Full Text] [Related]
9. Antisense-mediated exon skipping: taking advantage of a trick from Mother Nature to treat rare genetic diseases. Veltrop M; Aartsma-Rus A Exp Cell Res; 2014 Jul; 325(1):50-5. PubMed ID: 24486759 [TBL] [Abstract][Full Text] [Related]
15. [RNA splicing modulation: Therapeutic progress and perspectives]. Saoudi A; Goyenvalle A Med Sci (Paris); 2021; 37(6-7):625-631. PubMed ID: 34180822 [TBL] [Abstract][Full Text] [Related]
16. Toward an oligonucleotide therapy for Duchenne muscular dystrophy: a complex development challenge. Wood MJ Sci Transl Med; 2010 Mar; 2(25):25ps15. PubMed ID: 20424011 [TBL] [Abstract][Full Text] [Related]
17. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Echigoya Y; Yokota T Nucleic Acid Ther; 2014 Feb; 24(1):57-68. PubMed ID: 24380394 [TBL] [Abstract][Full Text] [Related]
18. The therapeutic potential of antisense-mediated exon skipping. van Ommen GJ; van Deutekom J; Aartsma-Rus A Curr Opin Mol Ther; 2008 Apr; 10(2):140-9. PubMed ID: 18386226 [TBL] [Abstract][Full Text] [Related]
19. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes. Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140 [TBL] [Abstract][Full Text] [Related]
20. Genetic neuromuscular disorders: living the era of a therapeutic revolution. Part 2: diseases of motor neuron and skeletal muscle. Vita G; Vita GL; Musumeci O; Rodolico C; Messina S Neurol Sci; 2019 Apr; 40(4):671-681. PubMed ID: 30805745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]