BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27854309)

  • 21. Prediction of aromatic amines mutagenicity from theoretical molecular descriptors.
    Gramatica P; Consonni V; Pavan M
    SAR QSAR Environ Res; 2003 Aug; 14(4):237-50. PubMed ID: 14506868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting the genotoxicity of secondary and aromatic amines using data subsetting to generate a model ensemble.
    Mattioni BE; Kauffman GW; Jurs PC; Custer LL; Durham SK; Pearl GM
    J Chem Inf Comput Sci; 2003; 43(3):949-63. PubMed ID: 12767154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum-chemical studies on mutagenicity of aromatic and heteroaromatic amines.
    Borosky GL
    Front Biosci (Schol Ed); 2013 Jan; 5(2):600-10. PubMed ID: 23277072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of mutagenicity and carcinogenicity using in silico modelling: A case study of polychlorinated biphenyls.
    Vračko M; Bobst S
    SAR QSAR Environ Res; 2015; 26(7-9):667-82. PubMed ID: 26329919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer-assisted structure-activity studies of chemical carcinogens. Aromatic amines.
    Yuta K; Jurs PC
    J Med Chem; 1981 Mar; 24(3):241-51. PubMed ID: 7265110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices.
    Contrera JF; Matthews EJ; Daniel Benz R
    Regul Toxicol Pharmacol; 2003 Dec; 38(3):243-59. PubMed ID: 14623477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring Intrinsic Dimensionality of Chemical Spaces for Robust QSAR Model Development: A Comparison of Several Statistical Approaches.
    Majumdar S; Basak SC
    Curr Comput Aided Drug Des; 2016; 12(4):294-301. PubMed ID: 27600878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic Reactivity Descriptors for the Prediction of Ames Mutagenicity of Primary Aromatic Amines.
    Kuhnke L; Ter Laak A; Göller AH
    J Chem Inf Model; 2019 Feb; 59(2):668-672. PubMed ID: 30694664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Explanation for main features of structure-genotoxicity relationships of aromatic amines by theoretical studies of their activation pathways in CYP1A2.
    Shamovsky I; Ripa L; Börjesson L; Mee C; Nordén B; Hansen P; Hasselgren C; O'Donovan M; Sjö P
    J Am Chem Soc; 2011 Oct; 133(40):16168-85. PubMed ID: 21894985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach.
    Helguera AM; Pérez-Machado G; Cordeiro MN; Combes RD
    SAR QSAR Environ Res; 2010 Apr; 21(3-4):277-304. PubMed ID: 20544552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity.
    Patlewicz G; Rodford R; Walker JD
    Environ Toxicol Chem; 2003 Aug; 22(8):1885-93. PubMed ID: 12924587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices.
    Cash GG; Anderson B; Mayo K; Bogaczyk S; Tunkel J
    Mutat Res; 2005 Aug; 585(1-2):170-83. PubMed ID: 15961341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. QSAR modelling of carcinogenicity by balance of correlations.
    Toropov AA; Toropova AP; Benfenati E; Manganaro A
    Mol Divers; 2009 Aug; 13(3):367-73. PubMed ID: 19190994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arylamine drugs: genotoxic-carcinogenic activity of NO-derivatives.
    Martelli A; Brambilla G
    Front Biosci (Elite Ed); 2012 Jan; 4(6):2071-84. PubMed ID: 22202020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Innovative screening for functional improved aromatic amine derivatives: Toxicokinetics, free radical oxidation pathway and carcinogenic adverse outcome pathway.
    Liu Y; Li X; Pu Q; Fu R; Wang Z; Li Y; Li X
    J Hazard Mater; 2023 Jul; 454():131541. PubMed ID: 37146326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of QSARs in identification of mutagenicity mechanisms of nitro and amino aromatic compounds against Salmonella typhimurium species.
    Jillella GK; Khan K; Roy K
    Toxicol In Vitro; 2020 Jun; 65():104768. PubMed ID: 31926304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSAR study for carcinogenicity in a large set of organic compounds.
    Duchowicz PR; Comelli NC; Ortiz EV; Castro EA
    Curr Drug Saf; 2012 Sep; 7(4):282-8. PubMed ID: 23062240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carcinogenic ranking of aromatic amines and nitro compounds.
    Crabtree HC; Hart D; Thomas MC; Witham BH; McKenzie IG; Smith CP
    Mutat Res; 1991 Dec; 264(4):155-62. PubMed ID: 1723492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.