These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27855113)

  • 1. Comparison of novel physiological load-adaptive control strategies for ventricular assist devices.
    Habigt M; Ketelhut M; Gesenhues J; Schrödel F; Hein M; Mechelinck M; Schmitz-Rode T; Abel D; Rossaint R
    Biomed Tech (Berl); 2017 Apr; 62(2):149-160. PubMed ID: 27855113
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Habigt MA; Gesenhues J; Ketelhut M; Hein M; Duschner P; Rossaint R; Mechelinck M
    Biomed Tech (Berl); 2021 Jun; 66(3):257-266. PubMed ID: 34062635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametrization of an in-silico circulatory simulation by clinical datasets - towards prediction of ventricular function following assist device implantation.
    Moza A; Gesenhues J; Autschbach R; Abel D; Rossaint R; Schmitz-Rode T; Goetzenich A
    Biomed Tech (Berl); 2017 Apr; 62(2):123-130. PubMed ID: 28259865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Multi-objective Physiological Control System for Rotary Left Ventricular Assist Devices.
    Petrou A; Monn M; Meboldt M; Schmid Daners M
    Ann Biomed Eng; 2017 Dec; 45(12):2899-2910. PubMed ID: 28900761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency operation of a pulsatile VAD - a simulation study.
    Rebholz M; Amacher R; Petrou A; Meboldt M; Schmid Daners M
    Biomed Tech (Berl); 2017 Apr; 62(2):161-170. PubMed ID: 27505081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A variable gain physiological controller for a rotary left ventricular assist device.
    Silva LFV; Cordeiro TD; Lima AMN
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5606-5609. PubMed ID: 34892395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An advanced physiological controller design for a left ventricular assist device to prevent left ventricular collapse.
    Wu Y; Allaire P; Tao G; Wood H; Olsen D; Tribble C
    Artif Organs; 2003 Oct; 27(10):926-30. PubMed ID: 14616537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective reduction of afterload in right heart assist therapy: a mock loop study†.
    Hsu PL; Hatam N; Unterkofler J; Goetzenich A; McIntyre M; Wong KC; Egger C; Schmitz-Rode T; Autschbach R; Steinseifer U
    Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):76-81. PubMed ID: 24670773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Evaluation of a Novel Control Algorithm for Left Ventricular Assist Devices Based Upon Ventricular Stroke Work.
    Habigt MA; Hein M; Gesenhues J; Abel D; Rossaint R; Mechelinck M
    ASAIO J; 2023 Jan; 69(1):86-95. PubMed ID: 35420555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of a physiological controller for ventricular assist devices during acute patho-physiological events: an in vitro study.
    Petrou A; Pergantis P; Ochsner G; Amacher R; Krabatsch T; Falk V; Meboldt M; Daners MS
    Biomed Tech (Berl); 2017 Nov; 62(6):623-633. PubMed ID: 28182575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.
    Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M
    Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation.
    Wu EL; Stevens MC; Nestler F; Pauls JP; Bradley AP; Tansley G; Fraser JF; Gregory SD
    Artif Organs; 2020 Mar; 44(3):E40-E53. PubMed ID: 31520408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preload-based starling-like control for rotary blood pumps: numerical comparison with pulsatility control and constant speed operation.
    Mansouri M; Salamonsen RF; Lim E; Akmeliawati R; Lovell NH
    PLoS One; 2015; 10(4):e0121413. PubMed ID: 25849979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological control of implantable rotary blood pumps for heart failure patients.
    Bakouri MA; Salamonsen RF; Savkin AV; Alomari AH; Lim E; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():675-8. PubMed ID: 24109777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standardized Comparison of Selected Physiological Controllers for Rotary Blood Pumps: In Vitro Study.
    Petrou A; Lee J; Dual S; Ochsner G; Meboldt M; Schmid Daners M
    Artif Organs; 2018 Mar; 42(3):E29-E42. PubMed ID: 29094351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LVAD speed increase during exercise, which patients would benefit the most? A simulation study.
    Gross C; Moscato F; Schlöglhofer T; Maw M; Meyns B; Marko C; Wiedemann D; Zimpfer D; Schima H; Fresiello L
    Artif Organs; 2020 Mar; 44(3):239-247. PubMed ID: 31519043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Right heart function during prosthetic left ventricular assistance in a porcine model of congestive heart failure.
    Chow E; Farrar DJ
    J Thorac Cardiovasc Surg; 1992 Sep; 104(3):569-78. PubMed ID: 1513147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume.
    Ochsner G; Amacher R; Wilhelm MJ; Vandenberghe S; Tevaearai H; Plass A; Amstutz A; Falk V; Schmid Daners M
    Artif Organs; 2014 Jul; 38(7):527-38. PubMed ID: 24256168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.