These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 27855217)
21. Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil-based formulations. Oliveira DGP; Lopes RB; Rezende JM; Delalibera I J Invertebr Pathol; 2018 Jan; 151():151-157. PubMed ID: 29175530 [TBL] [Abstract][Full Text] [Related]
22. The interplay between temperature, Trypanosoma cruzi parasite load, and nutrition: Their effects on the development and life-cycle of the Chagas disease vector Rhodnius prolixus. Loshouarn H; Guarneri AA PLoS Negl Trop Dis; 2024 Feb; 18(2):e0011937. PubMed ID: 38306403 [TBL] [Abstract][Full Text] [Related]
23. Behavioral fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi. Hinestroza G; Ortiz MI; Molina J Rev Soc Bras Med Trop; 2016; 49(4):425-32. PubMed ID: 27598628 [TBL] [Abstract][Full Text] [Related]
24. Effect of temperature on virulence of Beauveria bassiana and Metarhizium anisopliae isolates to Tetranychus evansi. Bugeme DM; Maniania NK; Knapp M; Boga HI Exp Appl Acarol; 2008 Dec; 46(1-4):275-85. PubMed ID: 18648993 [TBL] [Abstract][Full Text] [Related]
25. Different strategies to kill the host presented by Metarhizium anisopliae and Beauveria bassiana. Rustiguel CB; Fernández-Bravo M; Guimarães LHS; Quesada-Moraga E Can J Microbiol; 2018 Mar; 64(3):191-200. PubMed ID: 29268028 [TBL] [Abstract][Full Text] [Related]
27. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Bukhari T; Takken W; Koenraadt CJ Parasit Vectors; 2011 Feb; 4():23. PubMed ID: 21342492 [TBL] [Abstract][Full Text] [Related]
28. A new bioassay method reveals pathogenicity of Metarhizium anisopliae and Beauveria bassiana against early stages of Capnodis tenebrionis (Coleoptera; Buprestidae). Marannino P; Santiago-Alvarez C; de Lillo E; Quesada-Moraga E J Invertebr Pathol; 2006 Nov; 93(3):210-3. PubMed ID: 16996080 [TBL] [Abstract][Full Text] [Related]
29. Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus. Rebello KM; Uehara LA; Ennes-Vidal V; Garcia-Gomes AS; Britto C; Azambuja P; Menna-Barreto RFS; Santos ALS; Branquinha MH; d'Avila-Levy CM Parasitology; 2019 Jul; 146(8):1075-1082. PubMed ID: 31057143 [TBL] [Abstract][Full Text] [Related]
30. Potential for entomopathogenic fungi to control Triatoma dimidiata (Hemiptera: Reduviidae), a vector of Chagas disease in Mexico. Vázquez-Martínez MG; Cirerol-Cruz BE; Torres-Estrada JL; López MH Rev Soc Bras Med Trop; 2014; 47(6):716-22. PubMed ID: 25626650 [TBL] [Abstract][Full Text] [Related]
31. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Bernardo CC; Barreto LP; E Silva CSR; Luz C; Arruda W; Fernandes ÉKK Ticks Tick Borne Dis; 2018 Jul; 9(5):1334-1342. PubMed ID: 29914750 [TBL] [Abstract][Full Text] [Related]
32. Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing. Ferreira RC; Kessler RL; Lorenzo MG; Paim RM; Ferreira Lde L; Probst CM; Alves-Silva J; Guarneri AA Parasitology; 2016 Apr; 143(4):434-43. PubMed ID: 26818093 [TBL] [Abstract][Full Text] [Related]
33. Triatomine physiology in the context of trypanosome infection. Guarneri AA; Lorenzo MG J Insect Physiol; 2017; 97():66-76. PubMed ID: 27401496 [TBL] [Abstract][Full Text] [Related]
34. Dependence of the entomopathogenic fungus, Beauveria bassiana, on high humidity for infection of Rhodnius prolixus. Luz C; Fargues J Mycopathologia; 1999; 146(1):33-41. PubMed ID: 10721518 [TBL] [Abstract][Full Text] [Related]
35. Heme crystallization in a Chagas disease vector acts as a redox-protective mechanism to allow insect reproduction and parasite infection. Ferreira CM; Stiebler R; Saraiva FM; Lechuga GC; Walter-Nuno AB; Bourguignon SC; Gonzalez MS; Azambuja P; Gandara ACP; Menna-Barreto RFS; Paiva-Silva GO; Paes MC; Oliveira MF PLoS Negl Trop Dis; 2018 Jul; 12(7):e0006661. PubMed ID: 30036366 [TBL] [Abstract][Full Text] [Related]
36. Lack of manipulation of Rhodnius prolixus (Hemiptera: Reduviidae) vector competence by Trypanosoma cruzi. Takano-Lee M; Edman JD J Med Entomol; 2002 Jan; 39(1):44-51. PubMed ID: 11931271 [TBL] [Abstract][Full Text] [Related]
37. Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Fieck A; Hurwitz I; Kang AS; Durvasula R Exp Parasitol; 2010 Aug; 125(4):342-7. PubMed ID: 20206169 [TBL] [Abstract][Full Text] [Related]
38. Can fungal biopesticides control malaria? Thomas MB; Read AF Nat Rev Microbiol; 2007 May; 5(5):377-83. PubMed ID: 17426726 [TBL] [Abstract][Full Text] [Related]
39. Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Jaber S; Mercier A; Knio K; Brun S; Kambris Z Parasit Vectors; 2016 Sep; 9(1):491. PubMed ID: 27595597 [TBL] [Abstract][Full Text] [Related]
40. Biological Control of the Chagas Disease Vector Triatoma infestans with the Entomopathogenic Fungus Beauveria bassiana Combined with an Aggregation Cue: Field, Laboratory and Mathematical Modeling Assessment. Forlani L; Pedrini N; Girotti JR; Mijailovsky SJ; Cardozo RM; Gentile AG; Hernández-Suárez CM; Rabinovich JE; Juárez MP PLoS Negl Trop Dis; 2015 May; 9(5):e0003778. PubMed ID: 25969989 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]