These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27855707)

  • 21. De novo assembly of bacterial transcriptomes from RNA-seq data.
    Tjaden B
    Genome Biol; 2015 Jan; 16(1):1. PubMed ID: 25583448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo assembly of the perennial ryegrass transcriptome using an RNA-Seq strategy.
    Farrell JD; Byrne S; Paina C; Asp T
    PLoS One; 2014; 9(8):e103567. PubMed ID: 25126744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating de Bruijn graph assemblers on 454 transcriptomic data.
    Ren X; Liu T; Dong J; Sun L; Yang J; Zhu Y; Jin Q
    PLoS One; 2012; 7(12):e51188. PubMed ID: 23236450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.
    Lu B; Zeng Z; Shi T
    Sci China Life Sci; 2013 Feb; 56(2):143-55. PubMed ID: 23393030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. StLiter: A Novel Algorithm to Iteratively Build the Compacted de Bruijn Graph From Many Complete Genomes.
    Yu C; Mao K; Zhao Y; Chang C; Wang G
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2471-2483. PubMed ID: 33630738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of interleukin genes in Pogona vitticeps using a de novo transcriptome assembly from RNA-seq data.
    Livernois A; Hardy K; Domaschenz R; Papanicolaou A; Georges A; Sarre SD; Rao S; Ezaz T; Deakin JE
    Immunogenetics; 2016 Oct; 68(9):719-31. PubMed ID: 27255409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic Alignment-Free and Reference-Free Read Compression.
    Holley G; Wittler R; Stoye J; Hach F
    J Comput Biol; 2018 Jul; 25(7):825-836. PubMed ID: 30011247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AGORA: Assembly Guided by Optical Restriction Alignment.
    Lin HC; Goldstein S; Mendelowitz L; Zhou S; Wetzel J; Schwartz DC; Pop M
    BMC Bioinformatics; 2012 Aug; 13():189. PubMed ID: 22856673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments.
    Vijay N; Poelstra JW; Künstner A; Wolf JB
    Mol Ecol; 2013 Feb; 22(3):620-34. PubMed ID: 22998089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. K-mer clustering algorithm using a MapReduce framework: application to the parallelization of the Inchworm module of Trinity.
    Kim CS; Winn MD; Sachdeva V; Jordan KE
    BMC Bioinformatics; 2017 Nov; 18(1):467. PubMed ID: 29100493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo assembly and analysis of changes in the protein-coding transcriptome of the freshwater shrimp Paratya australiensis (Decapoda: Atyidae) in response to acid sulfate drainage water.
    Bain PA; Gregg AL; Kumar A
    BMC Genomics; 2016 Nov; 17(1):890. PubMed ID: 27821072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bridger: a new framework for de novo transcriptome assembly using RNA-seq data.
    Chang Z; Li G; Liu J; Zhang Y; Ashby C; Liu D; Cramer CL; Huang X
    Genome Biol; 2015 Feb; 16(1):30. PubMed ID: 25723335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prioritizing and selecting likely novel miRNAs from NGS data.
    Backes C; Meder B; Hart M; Ludwig N; Leidinger P; Vogel B; Galata V; Roth P; Menegatti J; Grässer F; Ruprecht K; Kahraman M; Grossmann T; Haas J; Meese E; Keller A
    Nucleic Acids Res; 2016 Apr; 44(6):e53. PubMed ID: 26635395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Konnector v2.0: pseudo-long reads from paired-end sequencing data.
    Vandervalk BP; Yang C; Xue Z; Raghavan K; Chu J; Mohamadi H; Jackman SD; Chiu R; Warren RL; Birol I
    BMC Med Genomics; 2015; 8 Suppl 3(Suppl 3):S1. PubMed ID: 26399504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2.
    Khan J; Kokot M; Deorowicz S; Patro R
    Genome Biol; 2022 Sep; 23(1):190. PubMed ID: 36076275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs.
    Holley G; Melsted P
    Genome Biol; 2020 Sep; 21(1):249. PubMed ID: 32943081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detecting circular RNA from high-throughput sequence data with de Bruijn graph.
    Li X; Wu Y
    BMC Genomics; 2020 Mar; 21(Suppl 1):749. PubMed ID: 32138643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reference-free transcriptome assembly in non-model animals from next-generation sequencing data.
    Cahais V; Gayral P; Tsagkogeorga G; Melo-Ferreira J; Ballenghien M; Weinert L; Chiari Y; Belkhir K; Ranwez V; Galtier N
    Mol Ecol Resour; 2012 Sep; 12(5):834-45. PubMed ID: 22540679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.