These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 27855895)

  • 21. Separation of trace amount of silver using dispersive liquid-liquid based on solidification of floating organic drop microextraction.
    Afzali D; Mohadesi AR; Jahromi BB; Falahnejad M
    Anal Chim Acta; 2011 Jan; 684(1-2):45-9. PubMed ID: 21167984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.
    Anthemidis AN; Ioannou KI
    Talanta; 2009 Jun; 79(1):86-91. PubMed ID: 19376348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an Accurate and Sensitive Analytical Method for the Determination of Cadmium at Trace Levels Using Dispersive Liquid-Liquid Microextraction Based on the Solidification of Floating Organic Drops Combined with Slotted Quartz Tube Flame Atomic Absorption Spectrometry.
    Aydin I; Chormey DS; Budak T; Fırat M; Turak F; Bakirdere S
    J AOAC Int; 2018 May; 101(3):843-847. PubMed ID: 28903806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trace determination of cobalt in biological fluids based on preconcentration with a new competitive ligand using dispersive liquid-liquid microextraction combined with slotted quartz tube-flame atomic absorption spectrophotometry.
    Öztürk Er E; Bakırdere EG; Unutkan T; Bakırdere S
    J Trace Elem Med Biol; 2018 Sep; 49():13-18. PubMed ID: 29895362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.
    Stanisz E; Zgoła-Grześkowiak A
    Talanta; 2013 Oct; 115():178-83. PubMed ID: 24054576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel dispersive liquid-liquid microextraction method based on solidification of floating organic drop for preconcentration of Pd(II) by graphite furnace atomic absorption spectrometry after complexation by a thienyl substituted 1,2-ethanediamine.
    Ragheb E; Hashemi P; Alizadeh K; Ganjali MR
    Anal Sci; 2015; 31(2):119-24. PubMed ID: 25746810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry.
    Sahin CA; Tokgöz I
    Anal Chim Acta; 2010 May; 667(1-2):83-7. PubMed ID: 20441870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capabilities and limitations of dispersive liquid-liquid microextraction with solidification of floating organic drop for the extraction of organic pollutants from water samples.
    Vera-Avila LE; Rojo-Portillo T; Covarrubias-Herrera R; Peña-Alvarez A
    Anal Chim Acta; 2013 Dec; 805():60-9. PubMed ID: 24296144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitive determination of in , beverage and cereal samples by a novel liquid-phase microextraction coupled with flame atomic absorption spectrometry.
    Wu Q; Wu C; Wang C; Lu X; Li X; Wang Z
    Anal Methods; 2011 Jan; 3(1):210-216. PubMed ID: 32938133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid determination of anilines in water samples by dispersive liquid-liquid microextraction based on solidification of floating organic drop prior to gas chromatography-mass spectrometry.
    Diao CP; Wei CH
    Anal Bioanal Chem; 2012 May; 403(3):877-84. PubMed ID: 22434272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of two microextraction methods based on solidification of floating organic droplet for the determination of multiclass analytes in river water samples by liquid chromatography tandem mass spectrometry using Central Composite Design.
    Asati A; Satyanarayana GNV; Patel DK
    J Chromatogr A; 2017 Sep; 1513():157-171. PubMed ID: 28735710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters.
    Li Y; Peng G; He Q; Zhu H; Al-Hamadani SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():156-61. PubMed ID: 25590827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography.
    Ahmadi-Jouibari T; Fattahi N; Shamsipur M
    J Pharm Biomed Anal; 2014 Jun; 94():145-51. PubMed ID: 24583909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison Studies on Several Ligands Used in Determination of Cd(II) in Rice by Flame Atomic Absorption Spectrometry after Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction.
    Sun Q; Cui X; Wang Y; Zhang P; Lu W
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Determination of phthalates in water by dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by high performance liquid chromatography].
    Wu C; Li Y; Chang S; Chen Y; Chen D; Gong J; Xu L
    Se Pu; 2018 May; 36(5):452-457. PubMed ID: 30136486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel ionic liquid/micro-volume back extraction procedure combined with flame atomic absorption spectrometry for determination of trace nickel in samples of nutritional interest.
    Dadfarnia S; Shabani AM; Bidabadi MS; Jafari AA
    J Hazard Mater; 2010 Jan; 173(1-3):534-8. PubMed ID: 19744780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop with Central Composite Design for the Spectrofluorometric Determination of Naproxen.
    Shirinnejad M; Sarrafi AHM
    J Fluoresc; 2019 Jul; 29(4):1039-1047. PubMed ID: 31332643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of dispersive liquid-liquid-solidified floating organic drop microextraction and ETAAS for the preconcentration and determination of indium.
    Ashrafzadeh Afshar E; Taher MA; Fazelirad H; Naghizadeh M
    Anal Bioanal Chem; 2017 Mar; 409(7):1837-1843. PubMed ID: 28050626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enrichment of copper as 1-(2-pyridylazo)-2-naphthol complex by the combination of dispersive liquid-liquid microextraction/flame atomic absorption spectrometry.
    Kandhro GA; Soylak M; Kazi TG; Yilmaz E
    J AOAC Int; 2014; 97(1):205-10. PubMed ID: 24672879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid-Phase Extraction Followed by Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop for the Determination of Parabens.
    Hashemi B; Shamsipur M; Fattahi N
    J Chromatogr Sci; 2015 Sep; 53(8):1414-9. PubMed ID: 25716984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.