BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27855916)

  • 21. Rapid, non-destructive selection of peanuts for high aflatoxin content by soaking and tandem mass spectrometry.
    Schatzki TF; Haddon WF
    J Agric Food Chem; 2002 May; 50(10):3062-9. PubMed ID: 11982442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral intelligent detection for aflatoxin B1 via contrastive learning based on Siamese network.
    Zhu H; Zhao Y; Gu Q; Zhao L; Yang R; Han Z
    Food Chem; 2024 Aug; 449():139171. PubMed ID: 38604026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of sampling plans to determine aflatoxin in farmers' stock peanut lots by measuring aflatoxin in high-risk-grade components.
    Whitaker TB; Hagler WM; Giesbrecht FG
    J AOAC Int; 1999; 82(2):264-70. PubMed ID: 10191533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of aflatoxins in some samples of peanuts.
    DiProssimo VP
    J Assoc Off Anal Chem; 1976 Jul; 59(4):941-4. PubMed ID: 942627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pixel-level aflatoxin detecting in maize based on feature selection and hyperspectral imaging.
    Gao J; Ni J; Wang D; Deng L; Li J; Han Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118269. PubMed ID: 32217452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Measurement and levels of aflatoxins in small-scale pressed peanut oil prepared in the Diourbel and Kaolack regions of Senegal].
    Ndiaye B; Diop YM; Diouf A; Fall M; Thiaw C; Thiam A; Barry O; Ciss M; Ba D
    Dakar Med; 1999; 44(2):202-5. PubMed ID: 11957285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of aflatoxin contamination in commercial Spanish peanuts.
    Santamarina MP; Sanchis V; Hernandez E
    Zentralbl Mikrobiol; 1986; 141(4):323-5. PubMed ID: 3094283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High performance liquid chromatographic determination of aflatoxins in chilli, peanut and rice using silica based monolithic column.
    Khayoon WS; Saad B; Lee TP; Salleh B
    Food Chem; 2012 Jul; 133(2):489-96. PubMed ID: 25683424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preharvest insect pests of peanuts and associated aflatoxin contaminants in Georgia, USA.
    Danso JK; Mbata GN; Holton RL
    J Econ Entomol; 2024 Jun; 117(3):993-1000. PubMed ID: 38602338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classification of maize kernels using NIR hyperspectral imaging.
    Williams PJ; Kucheryavskiy S
    Food Chem; 2016 Oct; 209():131-8. PubMed ID: 27173544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical inactivation of aflatoxins in peanut protein ingredients.
    Natarajan KR
    J Environ Pathol Toxicol Oncol; 1992; 11(4):217-27. PubMed ID: 1507074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sampling plans for aflatoxin analysis in peanuts and corn. Report of an FAO technical consultation. Rome.
    FAO Food Nutr Pap; 1993; 55():1-77. PubMed ID: 8181554
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of micro-encapsulated antioxidant formulations on mycobiota, residual levels, sensory analyses and insect pest attack in stored peanuts.
    Garcia D; Girardi NS; Passone MA; Nesci A; Etcheverry M
    Int J Food Microbiol; 2018 Nov; 285():158-164. PubMed ID: 30170271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective UV wavelength range for increasing aflatoxins reduction and decreasing oil deterioration in contaminated peanuts.
    Shen MH; Singh RK
    Food Res Int; 2022 Apr; 154():111016. PubMed ID: 35337575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Moldy Peanuts under Different Varieties and Moisture Content Using Hyperspectral Imaging and Data Augmentation Technologies.
    Liu Z; Jiang J; Li M; Yuan D; Nie C; Sun Y; Zheng P
    Foods; 2022 Apr; 11(8):. PubMed ID: 35454743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-sensitivity direct analysis of aflatoxins in peanuts and cereal matrices by ultra-performance liquid chromatography with fluorescence detection involving a large volume flow cell.
    Oulkar D; Goon A; Dhanshetty M; Khan Z; Satav S; Banerjee K
    J Environ Sci Health B; 2018 Apr; 53(4):255-260. PubMed ID: 29278977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of ultra-superheated steam on aflatoxin reduction and roasted peanut properties.
    Pukkasorn P; Ratphitagsanti W; Haruthaitanasan V
    J Sci Food Agric; 2018 Jun; 98(8):2935-2941. PubMed ID: 29168184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel chemometric classification for FTIR spectra of mycotoxin-contaminated maize and peanuts at regulatory limits.
    Kos G; Sieger M; McMullin D; Zahradnik C; Sulyok M; Öner T; Mizaikoff B; Krska R
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Oct; 33(10):1596-1607. PubMed ID: 27684544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laboratory evaluation of chemical control of aflatoxin production in unshelled peanuts (Arachis hypogaea L.).
    Calori-Domingues MA; Fonseca H
    Food Addit Contam; 1995; 12(3):347-50. PubMed ID: 7664926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subpixel detection of peanut in wheat flour using a matched subspace detector algorithm and near-infrared hyperspectral imaging.
    Laborde A; Jaillais B; Roger JM; Metz M; Jouan-Rimbaud Bouveresse D; Eveleigh L; Cordella C
    Talanta; 2020 Aug; 216():120993. PubMed ID: 32456911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.