BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 27855925)

  • 21. One-step synthesis of protein-encapsulated microspheres in a porous scaffold by freeze-drying double emulsions and tuneable protein release.
    Qian L; Zhang H
    Chem Commun (Camb); 2013 Oct; 49(78):8833-5. PubMed ID: 23959336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complexation of bovine serum albumin and sugar beet pectin: stabilising oil-in-water emulsions.
    Li X; Fang Y; Al-Assaf S; Phillips GO; Jiang F
    J Colloid Interface Sci; 2012 Dec; 388(1):103-11. PubMed ID: 22975397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigations into aggregate formation with oppositely charged oil-in-water emulsions at different pH values.
    Maier C; Zeeb B; Weiss J
    Colloids Surf B Biointerfaces; 2014 May; 117():368-75. PubMed ID: 24681049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.
    Jiao J; Burgess DJ
    AAPS PharmSci; 2003; 5(1):E7. PubMed ID: 12713279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoemulsions prepared by a low-energy emulsification method applied to edible films.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Nov; 58(22):11932-8. PubMed ID: 20977191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pure protein scaffolds from pickering high internal phase emulsion template.
    Li Z; Xiao M; Wang J; Ngai T
    Macromol Rapid Commun; 2013 Jan; 34(2):169-74. PubMed ID: 23060090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.
    Toprakcioglu Z; Levin A; Knowles TPJ
    Biomacromolecules; 2017 Nov; 18(11):3642-3651. PubMed ID: 28959882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable microcapsules prepared by a w/o/w technique: effects of shear force to make a primary w/o emulsion on their morphology and protein release.
    Sah HK; Toddywala R; Chien YW
    J Microencapsul; 1995; 12(1):59-69. PubMed ID: 7730957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature-induced protein release from water-in-oil-in-water double emulsions.
    Rojas EC; Staton JA; John VT; Papadopoulos KD
    Langmuir; 2008 Jul; 24(14):7154-60. PubMed ID: 18543998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vitro Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin.
    Xiao Y; Chen C; Wang B; Mao Z; Xu H; Zhong Y; Zhang L; Sui X; Qu S
    J Agric Food Chem; 2018 Nov; 66(46):12344-12352. PubMed ID: 30372059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes.
    Yin B; Deng W; Xu K; Huang L; Yao P
    J Colloid Interface Sci; 2012 Aug; 380(1):51-9. PubMed ID: 22682324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viscoelastic properties and fractal analysis of acid-induced SPI gels at different ionic strength.
    Bi CH; Li D; Wang LJ; Adhikari B
    Carbohydr Polym; 2013 Jan; 92(1):98-105. PubMed ID: 23218271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water.
    Schuch A; Deiters P; Henne J; Köhler K; Schuchmann HP
    J Colloid Interface Sci; 2013 Jul; 402():157-64. PubMed ID: 23643254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of oligoguluronate on the microstructure and properties of Ca-dependent soy protein gels.
    Cao L; Lu W; Ge J; Fang Y
    Carbohydr Polym; 2020 Dec; 250():116920. PubMed ID: 33049892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emulsion gels loaded with pancreatic lipase: Preparation from spontaneously made emulsions and assessment of the rheological, microscopic and cargo release properties.
    Moayedzadeh S; Asl AK; Gunasekaran S; Madadlou A
    Food Res Int; 2022 Jun; 156():111306. PubMed ID: 35651066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis.
    Chen H; Gan J; Ji A; Song S; Yin L
    Food Chem; 2019 Sep; 292():188-196. PubMed ID: 31054664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The coalescence stability of protein-stabilized emulsions estimated by analytical photo-centrifugation.
    Cheetangdee N; Oki M; Fukada K
    J Oleo Sci; 2011; 60(8):419-27. PubMed ID: 21768743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels.
    Hou JJ; Guo J; Wang JM; Yang XQ
    J Sci Food Agric; 2016 Oct; 96(13):4449-56. PubMed ID: 26841309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.
    Vlasenkova MI; Dolinina ES; Parfenyuk EV
    Pharm Dev Technol; 2019 Feb; 24(2):243-252. PubMed ID: 29583055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soy protein isolate-guar gum-goose liver oil O/W Pickering emulsions that remain stable under accelerated oxidation at high temperatures.
    Fan X; Li C; Shi Z; Xia Q; Du L; Zhou C; Pan D
    J Sci Food Agric; 2024 Jan; 104(2):1107-1115. PubMed ID: 37736877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.