These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27855939)

  • 1. Interaction of free arginine and guanidine with glucose under thermal processing conditions and formation of Amadori-derived imidazolones.
    Zhu Y; Yaylayan VA
    Food Chem; 2017 Apr; 220():87-92. PubMed ID: 27855939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the control and inhibition of glycation-the role of the guanidine reaction center with aldehydic and diketonic dicarbonyls. A mass spectrometry study.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Oct; 41(10):1346-68. PubMed ID: 17039581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction pattern of histidine, carnosine and histamine with methylglyoxal and other carbonyl compounds.
    Ghassem Zadeh R; Yaylayan V
    Food Chem; 2021 Oct; 358():129884. PubMed ID: 33933976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal.
    Gao Y; Wang Y
    Biochemistry; 2006 Dec; 45(51):15654-60. PubMed ID: 17176087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the Formation of 3-Deoxyglucosone- and Methylglyoxal-Derived Hydroimidazolones of Creatine during Heat Treatment of Meat.
    Treibmann S; Spengler F; Degen J; Löbner J; Henle T
    J Agric Food Chem; 2019 May; 67(20):5874-5881. PubMed ID: 31050431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of arginine modifications in a model system of Nα-tert-butoxycarbonyl (Boc)-arginine with methylglyoxal.
    Klöpfer A; Spanneberg R; Glomb MA
    J Agric Food Chem; 2011 Jan; 59(1):394-401. PubMed ID: 21126021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic MS/MS fragmentation patterns for the discrimination between Schiff bases and their Amadori or Heyns rearrangement products.
    Xing H; Mossine VV; Yaylayan V
    Carbohydr Res; 2020 May; 491():107985. PubMed ID: 32213351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced glycation end products of beta2-microglobulin in uremic patients as determined by high resolution mass spectrometry.
    Bertoletti L; Regazzoni L; Altomare A; Colombo R; Colzani M; Vistoli G; Marchese L; Carini M; De Lorenzi E; Aldini G
    J Pharm Biomed Anal; 2014 Mar; 91():193-201. PubMed ID: 24469019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indole: A Promising Scavenging Agent for Methylglyoxal and Related Carbonyls in Tryptophan Containing Maillard Model Systems.
    Ghassem Zadeh R; Yaylayan V
    J Agric Food Chem; 2019 Jun; 67(22):6359-6365. PubMed ID: 31088047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meaning and consequence of the coexistence of competitive hydrogen bond/salt forms on the dissociation orientation of non-covalent complexes.
    Darii E; Alves S; Gimbert Y; Perret A; Tabet JC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1047():45-58. PubMed ID: 27727023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in proton affinity of the guanidino group between free and blocked arginine.
    Liu Y; Jin L; Hou JB; Xu PX; Zhao YF
    Amino Acids; 2007 Jul; 33(1):145-50. PubMed ID: 17001446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic ions for the analysis of phenylalanine adducts of acrylamide and styrene by ESI-QTOF mass spectrometry.
    Chu FL; Sleno L; Yaylayan VA
    J Agric Food Chem; 2013 Oct; 61(43):10246-52. PubMed ID: 23387944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the Maillard reaction intermediates as divalent iron complexes in alanine/glucose/FeCl
    Kim ES; Yaylayan V
    Curr Res Food Sci; 2021; 4():287-294. PubMed ID: 33997795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I--reaction mechanism.
    Martins SI; Marcelis AT; van Boekel MA
    Carbohydr Res; 2003 Jul; 338(16):1651-63. PubMed ID: 12873421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylglyoxal Forms Diverse Mercaptomethylimidazole Crosslinks with Thiol and Guanidine Pairs in Endogenous Metabolites and Proteins.
    Coukos JS; Moellering RE
    ACS Chem Biol; 2021 Nov; 16(11):2453-2461. PubMed ID: 34581579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-linking of proteins by Maillard processes--model reactions of D-glucose or methylglyoxal with butylamine and guanidine derivatives.
    Lederer MO; Gerum F; Severin T
    Bioorg Med Chem; 1998 Jul; 6(7):993-1002. PubMed ID: 9730235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring post-translational arginine modification using chemically synthesized methylglyoxal hydroimidazolones.
    Wang T; Kartika R; Spiegel DA
    J Am Chem Soc; 2012 May; 134(21):8958-67. PubMed ID: 22591136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra performance liquid chromatography-mass spectrometric determination of the site specificity of modification of beta-casein by glucose and methylglyoxal.
    Lima M; Moloney C; Ames JM
    Amino Acids; 2009 Mar; 36(3):475-81. PubMed ID: 18516664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry.
    Frolov A; Hoffmann P; Hoffmann R
    J Mass Spectrom; 2006 Nov; 41(11):1459-69. PubMed ID: 17063450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening for glucose-triggered modifications of glutathione.
    Jerić I; Horvat S
    J Pept Sci; 2009 Aug; 15(8):540-7. PubMed ID: 19579211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.