These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 27855954)
1. Toxicity of treated bilge water: The need for revised regulatory control. Tiselius P; Magnusson K Mar Pollut Bull; 2017 Jan; 114(2):860-866. PubMed ID: 27855954 [TBL] [Abstract][Full Text] [Related]
2. Risk assessment of bilge water discharges in two Baltic shipping lanes. Magnusson K; Jalkanen JP; Johansson L; Smailys V; Telemo P; Winnes H Mar Pollut Bull; 2018 Jan; 126():575-584. PubMed ID: 28982478 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation. Rincón GJ; La Motta EJ J Environ Manage; 2014 Nov; 144():42-50. PubMed ID: 24908614 [TBL] [Abstract][Full Text] [Related]
4. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles. Zhou C; Vitiello V; Casals E; Puntes VF; Iamunno F; Pellegrini D; Changwen W; Benvenuto G; Buttino I Aquat Toxicol; 2016 Jan; 170():1-12. PubMed ID: 26562184 [TBL] [Abstract][Full Text] [Related]
5. Determining the bilge water waste risk and management in the Gulf of Antalya by the Monte Carlo method. Özkaynak ÖH; İçemer GT J Air Waste Manag Assoc; 2021 Dec; 71(12):1545-1554. PubMed ID: 34432604 [TBL] [Abstract][Full Text] [Related]
6. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa. Wendt I; Backhaus T; Blanck H; Arrhenius Å Ecotoxicology; 2016 Jul; 25(5):871-9. PubMed ID: 26984312 [TBL] [Abstract][Full Text] [Related]
7. Electrocoagulation and nanofiltration integrated process application in purification of bilge water using response surface methodology. Akarsu C; Ozay Y; Dizge N; Elif Gulsen H; Ates H; Gozmen B; Turabik M Water Sci Technol; 2016; 74(3):564-79. PubMed ID: 27508361 [TBL] [Abstract][Full Text] [Related]
8. Acute toxicity of oil and bilge cleaners to larval American oysters (Crassostrea virginica). Sigler M; Leibovitz L Bull Environ Contam Toxicol; 1982 Aug; 29(2):137-45. PubMed ID: 7126900 [No Abstract] [Full Text] [Related]
9. Acute toxicity of eight oil spill response chemicals to temperate, boreal, and Arctic species. Hansen BH; Altin D; Bonaunet K; Overjordet IB J Toxicol Environ Health A; 2014; 77(9-11):495-505. PubMed ID: 24754387 [TBL] [Abstract][Full Text] [Related]
10. Acute toxicity of naturally and chemically dispersed oil on the filter-feeding copepod Calanus finmarchicus. Hansen BH; Altin D; Olsen AJ; Nordtug T Ecotoxicol Environ Saf; 2012 Dec; 86():38-46. PubMed ID: 23063079 [TBL] [Abstract][Full Text] [Related]
11. Acute toxicity testing with the tropical marine copepod Acartia sinjiensis: optimisation and application. Gissi F; Binet MT; Adams MS Ecotoxicol Environ Saf; 2013 Nov; 97():86-93. PubMed ID: 23932510 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of acute silver toxicity in the euryhaline copepod Acartia tonsa. Pedroso MS; Pinho GL; Rodrigues SC; Bianchini A Aquat Toxicol; 2007 May; 82(3):173-80. PubMed ID: 17374407 [TBL] [Abstract][Full Text] [Related]
13. Application of a biological multilevel response approach in the copepod Acartia tonsa for toxicity testing of three oil Water Accommodated Fractions. Hafez T; Bilbao D; Etxebarria N; Duran R; Ortiz-Zarragoitia M Mar Environ Res; 2021 Jul; 169():105378. PubMed ID: 34102532 [TBL] [Abstract][Full Text] [Related]
14. Surfactant addition to enhance bioavailability of bilge water in single chamber microbial fuel cells (MFCs). Hwang JH; Kim KY; Resurreccion EP; Lee WH J Hazard Mater; 2019 Apr; 368():732-738. PubMed ID: 30739026 [TBL] [Abstract][Full Text] [Related]
15. Larval development ratio test with the calanoid copepod Acartia tonsa as a new bioassay to assess marine sediment quality. Buttino I; Vitiello V; Macchia S; Scuderi A; Pellegrini D Ecotoxicol Environ Saf; 2018 Mar; 149():1-9. PubMed ID: 29145160 [TBL] [Abstract][Full Text] [Related]
16. Toxicity of silver, zinc, copper, and nickel to the copepod Acartia tonsa exposed via a phytoplankton diet. Bielmyer GK; Grosell M; Brixti KV Environ Sci Technol; 2006 Mar; 40(6):2063-8. PubMed ID: 16570637 [TBL] [Abstract][Full Text] [Related]
17. Global Comparison of the Bacterial Communities of Bilge Water, Boat Surfaces, and External Port Water. Schaerer LG; Ghannam RB; Butler TM; Techtmann SM Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31585994 [TBL] [Abstract][Full Text] [Related]
18. Acute copper toxicity in the euryhaline copepod Acartia tonsa: implications for the development of an estuarine and marine biotic ligand model. Pinho GL; Bianchini A Environ Toxicol Chem; 2010 Aug; 29(8):1834-40. PubMed ID: 20821639 [TBL] [Abstract][Full Text] [Related]
19. Influence of UVB radiation on the lethal and sublethal toxicity of dispersed crude oil to planktonic copepod nauplii. Almeda R; Harvey TE; Connelly TL; Baca S; Buskey EJ Chemosphere; 2016 Jun; 152():446-58. PubMed ID: 27003367 [TBL] [Abstract][Full Text] [Related]
20. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa. Koski M; Stedmon C; Trapp S Mar Environ Res; 2017 Aug; 129():374-385. PubMed ID: 28687429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]