These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 27856163)
1. Facile synthesis of Fe Hu S; Ouyang W; Guo L; Lin Z; Jiang X; Qiu B; Chen G Biosens Bioelectron; 2017 Jun; 92():718-723. PubMed ID: 27856163 [TBL] [Abstract][Full Text] [Related]
2. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA). Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559 [TBL] [Abstract][Full Text] [Related]
3. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y; Zhang J; Wang X; Duan Y Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133 [TBL] [Abstract][Full Text] [Related]
4. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Wang C; Tan R; Li J; Zhang Z Anal Bioanal Chem; 2019 Apr; 411(11):2405-2414. PubMed ID: 30828760 [TBL] [Abstract][Full Text] [Related]
5. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Yang L; Zhang Y; Li R; Lin C; Guo L; Qiu B; Lin Z; Chen G Biosens Bioelectron; 2015 Aug; 70():268-74. PubMed ID: 25835519 [TBL] [Abstract][Full Text] [Related]
6. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection. Sharma A; Hayat A; Mishra RK; Catanante G; Bhand S; Marty JL Toxins (Basel); 2015 Sep; 7(9):3771-84. PubMed ID: 26402704 [TBL] [Abstract][Full Text] [Related]
7. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL; Zhang YF; Sun GP; Wang XN; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001 [TBL] [Abstract][Full Text] [Related]
8. A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates. Lin Y; Dai Y; Sun Y; Ding C; Sun W; Zhu X; Liu H; Luo C Talanta; 2018 May; 182():116-124. PubMed ID: 29501130 [TBL] [Abstract][Full Text] [Related]
9. Aptamer-Based Fluorometric Ochratoxin A Assay Based on Photoinduced Electron Transfer. Zhao H; Xiang X; Chen M; Ma C Toxins (Basel); 2019 Jan; 11(2):. PubMed ID: 30678367 [TBL] [Abstract][Full Text] [Related]
10. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Wang B; Wu Y; Chen Y; Weng B; Xu L; Li C Biosens Bioelectron; 2016 Jul; 81():125-130. PubMed ID: 26938491 [TBL] [Abstract][Full Text] [Related]
11. Detection of ochratoxin A by fluorescence sensing based on mesoporous materials. Wu J; Zhao J; Liu M; Zhao Z; Qiu Y; Li H; Wu J; Bai J Biosci Biotechnol Biochem; 2022 Aug; 86(9):1192-1199. PubMed ID: 35810001 [TBL] [Abstract][Full Text] [Related]
12. Label-Free G-Quadruplex Aptamer Fluorescence Assay for Ochratoxin A Using a Thioflavin T Probe. Wu K; Ma C; Zhao H; He H; Chen H Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29757205 [TBL] [Abstract][Full Text] [Related]
13. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Chen J; Zhang X; Cai S; Wu D; Chen M; Wang S; Zhang J Biosens Bioelectron; 2014 Jul; 57():226-31. PubMed ID: 24590125 [TBL] [Abstract][Full Text] [Related]
14. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Wang C; Qian J; Wang K; Yang X; Liu Q; Hao N; Wang C; Dong X; Huang X Biosens Bioelectron; 2016 Mar; 77():1183-91. PubMed ID: 26583358 [TBL] [Abstract][Full Text] [Related]
15. Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin A using upconversion nanoparticles as labels. Wu S; Duan N; Wang Z; Wang H Analyst; 2011 Jun; 136(11):2306-14. PubMed ID: 21479303 [TBL] [Abstract][Full Text] [Related]
16. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481 [TBL] [Abstract][Full Text] [Related]
17. Silver nanocluster-based aptasensor for the label-free and enzyme-free detection of ochratoxin A. Li R; Zhu L; Yang M; Liu A; Xu W; He P Food Chem; 2024 Jan; 431():137126. PubMed ID: 37579613 [TBL] [Abstract][Full Text] [Related]
18. PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Sheng L; Ren J; Miao Y; Wang J; Wang E Biosens Bioelectron; 2011 Apr; 26(8):3494-9. PubMed ID: 21334186 [TBL] [Abstract][Full Text] [Related]
19. A "turn-off" fluorescent biosensor for the detection of mercury (II) based on graphite carbon nitride. Li J; Wang H; Guo Z; Wang Y; Ma H; Ren X; Du B; Wei Q Talanta; 2017 Jan; 162():46-51. PubMed ID: 27837856 [TBL] [Abstract][Full Text] [Related]
20. Nanogapped Au Shao B; Ma X; Zhao S; Lv Y; Hun X; Wang H; Wang Z Anal Chim Acta; 2018 Nov; 1033():165-172. PubMed ID: 30172322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]