These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 27856224)
1. TiD: Standalone software for mining putative drug targets from bacterial proteome. Gupta R; Pradhan D; Jain AK; Rai CS Genomics; 2017 Jan; 109(1):51-57. PubMed ID: 27856224 [TBL] [Abstract][Full Text] [Related]
2. An interactomic approach for identification of putative drug targets in Listeria monocytogenes. Chordia N; Sharma NK; Kumar A Int J Bioinform Res Appl; 2015; 11(4):315-25. PubMed ID: 26561317 [TBL] [Abstract][Full Text] [Related]
3. Computational screening of potential drug targets for pathogens causing bacterial pneumonia. Nayak S; Pradhan D; Singh H; Reddy MS Microb Pathog; 2019 May; 130():271-282. PubMed ID: 30914386 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of potential drug targets by subtractive genome analyses of methicillin resistant Staphylococcus aureus. Uddin R; Saeed K Comput Biol Chem; 2014 Feb; 48():55-63. PubMed ID: 24361957 [TBL] [Abstract][Full Text] [Related]
5. Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach. Rahman A; Noore S; Hasan A; Ullah R; Rahman H; Hossain A; Ali Y; Islam S Comput Biol Chem; 2014 Oct; 52():66-72. PubMed ID: 25254941 [TBL] [Abstract][Full Text] [Related]
6. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis. Hassan SS; Tiwari S; Guimarães LC; Jamal SB; Folador E; Sharma NB; de Castro Soares S; Almeida S; Ali A; Islam A; Póvoa FD; de Abreu VA; Jain N; Bhattacharya A; Juneja L; Miyoshi A; Silva A; Barh D; Turjanski A; Azevedo V; Ferreira RS BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S3. PubMed ID: 25573232 [TBL] [Abstract][Full Text] [Related]
7. Prioritizing drug targets in Clostridium botulinum with a computational systems biology approach. Muhammad SA; Ahmed S; Ali A; Huang H; Wu X; Yang XF; Naz A; Chen J Genomics; 2014 Jul; 104(1):24-35. PubMed ID: 24837790 [TBL] [Abstract][Full Text] [Related]
8. Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational subtractive genomics and Protein-Protein interaction network. Uddin R; Jamil F Comput Biol Chem; 2018 Jun; 74():115-122. PubMed ID: 29587180 [TBL] [Abstract][Full Text] [Related]
9. Proteome mining for the identification and in-silico characterization of putative drug targets of multi-drug resistant Clostridium difficile strain 630. Lohani M; Dhasmana A; Haque S; Wahid M; Jawed A; Dar SA; Mandal RK; Areeshi MY; Khan S J Microbiol Methods; 2017 May; 136():6-10. PubMed ID: 28235560 [TBL] [Abstract][Full Text] [Related]
10. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M. Pradeepkiran JA; Sainath SB; Kumar KK; Bhaskar M Drug Des Devel Ther; 2015; 9():1691-706. PubMed ID: 25834405 [TBL] [Abstract][Full Text] [Related]
11. T-iDT : tool for identification of drug target in bacteria and validation by Mycobacterium tuberculosis. Singh NK; Selvam SM; Chakravarthy P In Silico Biol; 2006; 6(6):485-93. PubMed ID: 17518759 [TBL] [Abstract][Full Text] [Related]
12. In Silico Drug Target Discovery Through Proteome Mining from M. tuberculosis: An Insight into Antivirulent Therapy. Bhattacharya S; Ghosh P; Banerjee D; Banerjee A; Ray S Comb Chem High Throughput Screen; 2020; 23(3):253-268. PubMed ID: 32072892 [TBL] [Abstract][Full Text] [Related]
13. Proteome mining for drug target identification in Listeria monocytogenes strain EGD-e and structure-based virtual screening of a candidate drug target penicillin binding protein 4. Sarangi AN; Lohani M; Aggarwal R J Microbiol Methods; 2015 Apr; 111():9-18. PubMed ID: 25601791 [TBL] [Abstract][Full Text] [Related]
14. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions. Kumar A; Thotakura PL; Tiwary BK; Krishna R BMC Microbiol; 2016 May; 16():84. PubMed ID: 27176600 [TBL] [Abstract][Full Text] [Related]
16. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate. Ghosh S; Prava J; Samal HB; Suar M; Mahapatra RK J Microbiol Methods; 2014 Jun; 101():1-8. PubMed ID: 24685600 [TBL] [Abstract][Full Text] [Related]
17. Subtractive genomics approach to identify putative drug targets and identification of drug-like molecules for beta subunit of DNA polymerase III in Streptococcus species. Georrge JJ; Umrania VV Appl Biochem Biotechnol; 2012 Jul; 167(5):1377-95. PubMed ID: 22415782 [TBL] [Abstract][Full Text] [Related]
18. Genome comparisons as a tool for antimicrobial target discovery. Sun H; Chen HF; Chen R Methods Mol Biol; 2013; 993():31-8. PubMed ID: 23568462 [TBL] [Abstract][Full Text] [Related]
19. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets. Uddin R; Sufian M PLoS One; 2016; 11(1):e0146796. PubMed ID: 26799565 [TBL] [Abstract][Full Text] [Related]
20. Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification. Perumal D; Lim CS; Sakharkar KR; Sakharkar MK In Silico Biol; 2007; 7(4-5):453-65. PubMed ID: 18391237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]