These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27856345)

  • 1. Drug targeting of heme proteins in Mycobacterium tuberculosis.
    McLean KJ; Munro AW
    Drug Discov Today; 2017 Mar; 22(3):566-575. PubMed ID: 27856345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Multifaceted Information to Predict Mycobacterium tuberculosis-Human Protein-Protein Interactions.
    Sun J; Yang LL; Chen X; Kong DX; Liu R
    J Proteome Res; 2018 Nov; 17(11):3810-3823. PubMed ID: 30269499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Mycobacterium tuberculosis cytochromes P450: physiology, biochemistry & molecular intervention.
    McLean KJ; Belcher J; Driscoll MD; Fernandez CC; Le Van D; Bui S; Golovanova M; Munro AW
    Future Med Chem; 2010 Aug; 2(8):1339-53. PubMed ID: 21426022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetics-directed drug discovery for combating Mycobacterium tuberculosis infection.
    Quan Y; Xiong L; Chen J; Zhang HY
    J Biomol Struct Dyn; 2017 Feb; 35(3):616-621. PubMed ID: 26900080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms.
    Jayachandran R; Scherr N; Pieters J
    Expert Rev Anti Infect Ther; 2012 Sep; 10(9):1007-22. PubMed ID: 23106276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis.
    Nandakumar M; Nathan C; Rhee KY
    Nat Commun; 2014 Jun; 5():4306. PubMed ID: 24978671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic characterization of Mycobacterium tuberculosis reveals potential targets of bostrycin.
    Yuan P; He L; Chen D; Sun Y; Ge Z; Shen D; Lu Y
    J Proteomics; 2020 Feb; 212():103576. PubMed ID: 31706025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of novel lysine ɛ-aminotransferase inhibitors: An intriguing potential target for latent tuberculosis.
    Devi PB; Sridevi JP; Kakan SS; Saxena S; Jeankumar VU; Soni V; Anantaraju HS; Yogeeswari P; Sriram D
    Tuberculosis (Edinb); 2015 Dec; 95(6):786-794. PubMed ID: 26299907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting iron acquisition by Mycobacterium tuberculosis.
    Monfeli RR; Beeson C
    Infect Disord Drug Targets; 2007 Sep; 7(3):213-20. PubMed ID: 17897057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterium tuberculosis Low Molecular Weight Phosphatases (MPtpA and MPtpB): From Biological Insight to Inhibitors.
    Fanzani L; Porta F; Meneghetti F; Villa S; Gelain A; Lucarelli AP; Parisini E
    Curr Med Chem; 2015; 22(27):3110-32. PubMed ID: 26264920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron Acquisition in Mycobacterium tuberculosis.
    Chao A; Sieminski PJ; Owens CP; Goulding CW
    Chem Rev; 2019 Jan; 119(2):1193-1220. PubMed ID: 30474981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting protein biotinylation enhances tuberculosis chemotherapy.
    Tiwari D; Park SW; Essawy MM; Dawadi S; Mason A; Nandakumar M; Zimmerman M; Mina M; Ho HP; Engelhart CA; Ioerger T; Sacchettini JC; Rhee K; Ehrt S; Aldrich CC; Dartois V; Schnappinger D
    Sci Transl Med; 2018 Apr; 10(438):. PubMed ID: 29695454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting cAMP signaling in Mycobacterium tuberculosis for drug discovery.
    Kathayat D; VanderVen BC
    Trends Microbiol; 2024 Sep; 32(9):874-883. PubMed ID: 38360432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. More than cholesterol catabolism: regulatory vulnerabilities in Mycobacterium tuberculosis.
    Bonds AC; Sampson NS
    Curr Opin Chem Biol; 2018 Jun; 44():39-46. PubMed ID: 29906645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron Acquisition Pathways as Targets for Antitubercular Drugs.
    Meneghetti F; Villa S; Gelain A; Barlocco D; Chiarelli LR; Pasca MR; Costantino L
    Curr Med Chem; 2016; 23(35):4009-4026. PubMed ID: 27281295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New strategies in fighting TB: targeting Mycobacterium tuberculosis-secreted phosphatases MptpA & MptpB.
    Silva AP; Tabernero L
    Future Med Chem; 2010 Aug; 2(8):1325-37. PubMed ID: 21426021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting amino acid metabolism of Mycobacterium tuberculosis for developing inhibitors to curtail its survival.
    Yelamanchi SD; Surolia A
    IUBMB Life; 2021 Apr; 73(4):643-658. PubMed ID: 33624925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoniazid-induced control of Mycobacterium tuberculosis by primary human cells requires interleukin-1 receptor and tumor necrosis factor.
    Yamashiro LH; Eto C; Soncini M; Horewicz V; Garcia M; Schlindwein AD; Grisard EC; Rovaris DB; Báfica A
    Eur J Immunol; 2016 Aug; 46(8):1936-47. PubMed ID: 27230303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function, essentiality, and expression of cytochrome P450 enzymes and their cognate redox partners in Mycobacterium tuberculosis: are they drug targets?
    Ortega Ugalde S; Boot M; Commandeur JNM; Jennings P; Bitter W; Vos JC
    Appl Microbiol Biotechnol; 2019 May; 103(9):3597-3614. PubMed ID: 30810776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.