BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 27856712)

  • 1. Rates of performance loss and neuromuscular activity in men and women during cycling: evidence for a common metabolic basis of muscle fatigue.
    Sundberg CW; Hunter SK; Bundle MW
    J Appl Physiol (1985); 2017 Jan; 122(1):130-141. PubMed ID: 27856712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling.
    Bundle MW; Ernst CL; Bellizzi MJ; Wright S; Weyand PG
    Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1457-64. PubMed ID: 16840656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sprint performance-duration relationships are set by the fractional duration of external force application.
    Weyand PG; Lin JE; Bundle MW
    Am J Physiol Regul Integr Comp Physiol; 2006 Mar; 290(3):R758-65. PubMed ID: 16254125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.
    Schäfer LU; Hayes M; Dekerle J
    Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power reserve following ramp-incremental cycling to exhaustion: implications for muscle fatigue and function.
    Hodgson MD; Keir DA; Copithorne DB; Rice CL; Kowalchuk JM
    J Appl Physiol (1985); 2018 Aug; 125(2):304-312. PubMed ID: 29698107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise.
    Sundberg CW; Bundle MW
    Am J Physiol Regul Integr Comp Physiol; 2015 Jul; 309(1):R51-61. PubMed ID: 25876654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creatine supplementation improves performance above critical power but does not influence the magnitude of neuromuscular fatigue at task failure.
    Schäfer LU; Hayes M; Dekerle J
    Exp Physiol; 2019 Dec; 104(12):1881-1891. PubMed ID: 31512330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex differences in muscle fatigability and activation patterns of the human quadriceps femoris.
    Clark BC; Collier SR; Manini TM; Ploutz-Snyder LL
    Eur J Appl Physiol; 2005 May; 94(1-2):196-206. PubMed ID: 15791418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains.
    Black MI; Jones AM; Blackwell JR; Bailey SJ; Wylie LJ; McDonagh ST; Thompson C; Kelly J; Sumners P; Mileva KN; Bowtell JL; Vanhatalo A
    J Appl Physiol (1985); 2017 Mar; 122(3):446-459. PubMed ID: 28008101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes.
    Lepers R; Theurel J; Hausswirth C; Bernard T
    J Sci Med Sport; 2008 Jul; 11(4):381-9. PubMed ID: 17499023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise.
    Broxterman RM; Craig JC; Smith JR; Wilcox SL; Jia C; Warren S; Barstow TJ
    J Physiol; 2015 Sep; 593(17):4043-54. PubMed ID: 26104881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanomyographic fatigue threshold test for cycling.
    Zuniga JM; Housh TJ; Camic CL; Hendrix CR; Schmidt RJ; Mielke M; Johnson GO
    Int J Sports Med; 2010 Sep; 31(9):636-43. PubMed ID: 20589588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximal power output during incremental cycling test is dependent on the curvature constant of the power-time relationship.
    Souza KM; de Lucas RD; do Nascimento Salvador PC; Guglielmo LG; Caritá RA; Greco CC; Denadai BS
    Appl Physiol Nutr Metab; 2015 Sep; 40(9):895-8. PubMed ID: 26288395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instantaneous quantification of skeletal muscle activation, power production, and fatigue during cycle ergometry.
    Coelho AC; Cannon DT; Cao R; Porszasz J; Casaburi R; Knorst MM; Rossiter HB
    J Appl Physiol (1985); 2015 Mar; 118(5):646-54. PubMed ID: 25539940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular fatigue is greater following highly variable versus constant intensity endurance cycling.
    Theurel J; Lepers R
    Eur J Appl Physiol; 2008 Jul; 103(4):461-8. PubMed ID: 18415118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions.
    Hunter SK; Butler JE; Todd G; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2006 Oct; 101(4):1036-44. PubMed ID: 16728525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetaminophen ingestion improves muscle activation and performance during a 3-min all-out cycling test.
    Morgan PT; Vanhatalo A; Bowtell JL; Jones AM; Bailey SJ
    Appl Physiol Nutr Metab; 2019 Apr; 44(4):434-442. PubMed ID: 30270639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromuscular fatigue during a long-duration cycling exercise.
    Lepers R; Maffiuletti NA; Rochette L; Brugniaux J; Millet GY
    J Appl Physiol (1985); 2002 Apr; 92(4):1487-93. PubMed ID: 11896014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity-Dependent Contribution of Neuromuscular Fatigue after Constant-Load Cycling.
    Thomas K; Elmeua M; Howatson G; Goodall S
    Med Sci Sports Exerc; 2016 Sep; 48(9):1751-60. PubMed ID: 27187101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.