These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27856755)

  • 1. Controlling DNA-nanoparticle serum interactions.
    Zagorovsky K; Chou LY; Chan WC
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13600-13605. PubMed ID: 27856755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the Structure and Properties of DNA-Nanoparticle Superstructures Using Polyvalent Counterions.
    Chou LY; Song F; Chan WC
    J Am Chem Soc; 2016 Apr; 138(13):4565-72. PubMed ID: 26942662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination.
    Chou LY; Zagorovsky K; Chan WC
    Nat Nanotechnol; 2014 Feb; 9(2):148-55. PubMed ID: 24463361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo.
    Xu Q; Ensign LM; Boylan NJ; Schön A; Gong X; Yang JC; Lamb NW; Cai S; Yu T; Freire E; Hanes J
    ACS Nano; 2015 Sep; 9(9):9217-27. PubMed ID: 26301576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time measurement of PEG shedding from lipid nanoparticles in serum via NMR spectroscopy.
    Wilson SC; Baryza JL; Reynolds AJ; Bowman K; Keegan ME; Standley SM; Gardner NP; Parmar P; Agir VO; Yadav S; Zunic A; Vargeese C; Lee CC; Rajan S
    Mol Pharm; 2015 Feb; 12(2):386-92. PubMed ID: 25581130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled nanoparticle release from a hydrogel by DNA-mediated particle disaggregation.
    Nowald C; Käsdorf BT; Lieleg O
    J Control Release; 2017 Jan; 246():71-78. PubMed ID: 28017887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-triggered PEGylated pDNA-nanoparticles for controlled release of pDNA in tumors.
    Yingyuad P; Mével M; Prata C; Furegati S; Kontogiorgis C; Thanou M; Miller AD
    Bioconjug Chem; 2013 Mar; 24(3):343-62. PubMed ID: 23305338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance.
    Liu J; Wei T; Zhao J; Huang Y; Deng H; Kumar A; Wang C; Liang Z; Ma X; Liang XJ
    Biomaterials; 2016 Jun; 91():44-56. PubMed ID: 26994877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled nucleic acid nanoparticles capable of controlled disassembly in response to a single nucleotide mismatch.
    Kim J; Im CA; Jung Y; Qazi A; Shin JS
    Biomacromolecules; 2010 Jul; 11(7):1705-9. PubMed ID: 20527811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.
    Suk JS; Xu Q; Kim N; Hanes J; Ensign LM
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):28-51. PubMed ID: 26456916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of DNA block copolymer assemblies loaded with nanoparticles.
    Chen XJ; Hickey RJ; Park SJ
    Methods Mol Biol; 2013; 1025():207-24. PubMed ID: 23918340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Albumin corona on nanoparticles - a strategic approach in drug delivery.
    Mariam J; Sivakami S; Dongre PM
    Drug Deliv; 2016 Oct; 23(8):2668-2676. PubMed ID: 26056719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery.
    Bergen JM; von Recum HA; Goodman TT; Massey AP; Pun SH
    Macromol Biosci; 2006 Jul; 6(7):506-16. PubMed ID: 16921538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 1. Synthesis and characterization.
    Popielarski SR; Pun SH; Davis ME
    Bioconjug Chem; 2005; 16(5):1063-70. PubMed ID: 16173781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of DNA Nanostructures for High-Affinity Binding to Human Serum Albumin.
    Lacroix A; Edwardson TGW; Hancock MA; Dore MD; Sleiman HF
    J Am Chem Soc; 2017 May; 139(21):7355-7362. PubMed ID: 28475327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting DNA-mediated drug delivery in interior carcinoma using electromagnetically excited nanoparticles.
    Ghosh S; Das T; Chakraborty S; Das SK
    Comput Biol Med; 2011 Sep; 41(9):771-9. PubMed ID: 21752360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery.
    Wei W; Zhang X; Chen X; Zhou M; Xu R; Zhang X
    Nanoscale; 2016 Apr; 8(15):8118-25. PubMed ID: 27025546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and evaluation of clickable block copolymers for targeted nanoparticle drug delivery.
    Zhang S; Chan KH; Prud'homme RK; Link AJ
    Mol Pharm; 2012 Aug; 9(8):2228-36. PubMed ID: 22734614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells.
    Li SD; Huang L
    Mol Pharm; 2006; 3(5):579-88. PubMed ID: 17009857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Nanoparticle Design for Gene Therapy: Protection of Oligonucleotides from Degradation Without Impeding Release of Cargo.
    Fihurka O; Sanchez-Ramos J; Sava V
    Nanomed Nanosci Res; 2018; 2(6):. PubMed ID: 31058264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.