BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 27856772)

  • 1. pKAMA-ITACHI Vectors for Highly Efficient CRISPR/Cas9-Mediated Gene Knockout in Arabidopsis thaliana.
    Tsutsui H; Higashiyama T
    Plant Cell Physiol; 2017 Jan; 58(1):46-56. PubMed ID: 27856772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology.
    Liu DY; Qiu T; Ding XH; Li M; Zhu MY; Wang JH
    Yi Chuan; 2016 Aug; 38(8):756-64. PubMed ID: 27531614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient CRISPR/Cas9-based gene knockout in watermelon.
    Tian S; Jiang L; Gao Q; Zhang J; Zong M; Zhang H; Ren Y; Guo S; Gong G; Liu F; Xu Y
    Plant Cell Rep; 2017 Mar; 36(3):399-406. PubMed ID: 27995308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles.
    Hyun Y; Kim J; Cho SW; Choi Y; Kim JS; Coupland G
    Planta; 2015 Jan; 241(1):271-84. PubMed ID: 25269397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genome editing of wild strawberry genes, vector development and validation.
    Zhou J; Wang G; Liu Z
    Plant Biotechnol J; 2018 Nov; 16(11):1868-1877. PubMed ID: 29577545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis.
    Zhang Z; Mao Y; Ha S; Liu W; Botella JR; Zhu JK
    Plant Cell Rep; 2016 Jul; 35(7):1519-33. PubMed ID: 26661595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis.
    Mao Y; Zhang Z; Feng Z; Wei P; Zhang H; Botella JR; Zhu JK
    Plant Biotechnol J; 2016 Feb; 14(2):519-32. PubMed ID: 26360626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient CRISPR/Cas9-based genome editing in carrot cells.
    Klimek-Chodacka M; Oleszkiewicz T; Lowder LG; Qi Y; Baranski R
    Plant Cell Rep; 2018 Apr; 37(4):575-586. PubMed ID: 29332168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing.
    Ryder P; McHale M; Fort A; Spillane C
    Plant Cell Rep; 2017 Jun; 36(6):1005-1008. PubMed ID: 28289885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence Marker-Assisted Isolation of Cas9-Free and CRISPR-Edited Arabidopsis Plants.
    Yu H; Zhao Y
    Methods Mol Biol; 2019; 1917():147-154. PubMed ID: 30610634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in
    Feng Z; Zhang Z; Hua K; Gao X; Mao Y; Botella JR; Zhu JK
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9.
    Durr J; Papareddy R; Nakajima K; Gutierrez-Marcos J
    Sci Rep; 2018 Mar; 8(1):4443. PubMed ID: 29535386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha.
    Sugano SS; Nishihama R; Shirakawa M; Takagi J; Matsuda Y; Ishida S; Shimada T; Hara-Nishimura I; Osakabe K; Kohchi T
    PLoS One; 2018; 13(10):e0205117. PubMed ID: 30379827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system.
    Kim H; Kim ST; Ryu J; Choi MK; Kweon J; Kang BC; Ahn HM; Bae S; Kim J; Kim JS; Kim SG
    J Integr Plant Biol; 2016 Aug; 58(8):705-12. PubMed ID: 26946469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
    Xing HL; Dong L; Wang ZP; Zhang HY; Han CY; Liu B; Wang XC; Chen QJ
    BMC Plant Biol; 2014 Nov; 14():327. PubMed ID: 25432517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system.
    Zhou Y; Liu Y; Hussmann D; Brøgger P; Al-Saaidi RA; Tan S; Lin L; Petersen TS; Zhou GQ; Bross P; Aagaard L; Klein T; Rønn SG; Pedersen HD; Bolund L; Nielsen AL; Sørensen CB; Luo Y
    Cell Mol Life Sci; 2016 Jul; 73(13):2543-63. PubMed ID: 26755436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics.
    Liang Y; Zeng X; Peng X; Hou X
    Transgenic Res; 2018 Feb; 27(1):61-74. PubMed ID: 29392632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing.
    Gao X; Chen J; Dai X; Zhang D; Zhao Y
    Plant Physiol; 2016 Jul; 171(3):1794-800. PubMed ID: 27208253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.