These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 27856790)

  • 1. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A haptic pedal for surgery assistance.
    Díaz I; Gil JJ; Louredo M
    Comput Methods Programs Biomed; 2014 Sep; 116(2):97-104. PubMed ID: 24210869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and verification of a safety region for brain tumor removal with a telesurgical robot system.
    Jang J; Kim HW; Kim YS
    Minim Invasive Ther Allied Technol; 2014 Dec; 23(6):333-40. PubMed ID: 25345417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A telerobotic haptic system for minimally invasive stereotactic neurosurgery.
    Rossi A; Trevisani A; Zanotto V
    Int J Med Robot; 2005 Jan; 1(2):64-75. PubMed ID: 17518380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing robotic telesurgery with sensorless haptic feedback.
    Yilmaz N; Burkhart B; Deguet A; Kazanzides P; Tumerdem U
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1147-1155. PubMed ID: 38598140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented reality and haptic interfaces for robot-assisted surgery.
    Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN
    Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation.
    Trinitatova D; Tsetserukou D
    IEEE Trans Haptics; 2023; 16(4):463-469. PubMed ID: 37037227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lightweight and Affordable Wearable Haptic Controller for Robot-Assisted Microsurgery.
    Guo X; McFall F; Jiang P; Liu J; Lepora N; Zhang D
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.
    Su H; Shang W; Li G; Patel N; Fischer GS
    Ann Biomed Eng; 2017 Aug; 45(8):1917-1928. PubMed ID: 28447178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Performance of Passive Teleoperation Systems via Cutaneous Feedback.
    Pacchierotti C; Tirmizi A; Bianchini G; Prattichizzo D
    IEEE Trans Haptics; 2015; 8(4):397-409. PubMed ID: 26208364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudo-Haptic Feedback in Teleoperation.
    Neupert C; Matich S; Scherping N; Kupnik M; Werthschutzky R; Hatzfeld C
    IEEE Trans Haptics; 2016; 9(3):397-408. PubMed ID: 27116752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.