These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Franks TK; Powell KS; Choimes S; Marsh E; Iocco P; Sinclair BJ; Ford CM; van Heeswijck R Transgenic Res; 2006 Apr; 15(2):181-95. PubMed ID: 16604459 [TBL] [Abstract][Full Text] [Related]
24. Metabolons, enzyme-enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. Zhang Y; Fernie AR Plant Commun; 2021 Jan; 2(1):100081. PubMed ID: 33511342 [TBL] [Abstract][Full Text] [Related]
25. Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. You C; Zhang YH ACS Synth Biol; 2013 Feb; 2(2):102-10. PubMed ID: 23656373 [TBL] [Abstract][Full Text] [Related]
26. Synthetic Multienzyme Complexes, Catalytic Nanomachineries for Cascade Biosynthesis Qu J; Cao S; Wei Q; Zhang H; Wang R; Kang W; Ma T; Zhang L; Liu T; Wing-Ngor Au S; Sun F; Xia J ACS Nano; 2019 Sep; 13(9):9895-9906. PubMed ID: 31356751 [TBL] [Abstract][Full Text] [Related]
27. Production of the cyanogenic glycoside dhurrin in yeast. Kotopka BJ; Smolke CD Metab Eng Commun; 2019 Dec; 9():e00092. PubMed ID: 31110942 [TBL] [Abstract][Full Text] [Related]
29. Dhurrin-6'-glucoside, a cyanogenic diglucoside from Sorghum bicolor. Selmar D; Irandoost Z; Wray V Phytochemistry; 1996 Oct; 43(3):569-72. PubMed ID: 8987580 [TBL] [Abstract][Full Text] [Related]
30. A simple analytical method for dhurrin content evaluation in cyanogenic plants for their utilization in fodder and biofumigation. De Nicola GR; Leoni O; Malaguti L; Bernardi R; Lazzeri L J Agric Food Chem; 2011 Aug; 59(15):8065-9. PubMed ID: 21707058 [TBL] [Abstract][Full Text] [Related]
31. Tailoring the plant metabolome without a loose stitch. Memelink J Trends Plant Sci; 2005 Jul; 10(7):305-7. PubMed ID: 15950519 [TBL] [Abstract][Full Text] [Related]
32. The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench. Møller BL; Conn EE J Biol Chem; 1980 Apr; 255(7):3049-56. PubMed ID: 7358727 [TBL] [Abstract][Full Text] [Related]
33. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Busk PK; Møller BL Plant Physiol; 2002 Jul; 129(3):1222-31. PubMed ID: 12114576 [TBL] [Abstract][Full Text] [Related]
34. Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells. Heraud P; Cowan MF; Marzec KM; Møller BL; Blomstedt CK; Gleadow R Sci Rep; 2018 Feb; 8(1):2691. PubMed ID: 29426935 [TBL] [Abstract][Full Text] [Related]
35. Stabilization of dhurrin biosynthetic enzymes from Sorghum bicolor using a natural deep eutectic solvent. Knudsen C; Bavishi K; Viborg KM; Drew DP; Simonsen HT; Motawia MS; Møller BL; Laursen T Phytochemistry; 2020 Feb; 170():112214. PubMed ID: 31794881 [TBL] [Abstract][Full Text] [Related]
36. Plasticity of specialized metabolism as mediated by dynamic metabolons. Laursen T; Møller BL; Bassard JE Trends Plant Sci; 2015 Jan; 20(1):20-32. PubMed ID: 25435320 [TBL] [Abstract][Full Text] [Related]
37. Seedling growth and fall armyworm feeding preference influenced by dhurrin production in sorghum. Gruss SM; Ghaste M; Widhalm JR; Tuinstra MR Theor Appl Genet; 2022 Mar; 135(3):1037-1047. PubMed ID: 35001177 [TBL] [Abstract][Full Text] [Related]
38. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Kristensen C; Morant M; Olsen CE; Ekstrøm CT; Galbraith DW; Møller BL; Bak S Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1779-84. PubMed ID: 15665094 [TBL] [Abstract][Full Text] [Related]