BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27857165)

  • 1. Red blood cell phase separation in symmetric and asymmetric microchannel networks: effect of capillary dilation and inflow velocity.
    Clavica F; Homsy A; Jeandupeux L; Obrist D
    Sci Rep; 2016 Nov; 6():36763. PubMed ID: 27857165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro study on the partitioning of red blood cells using a microchannel network.
    Hyakutake T; Abe H; Miyoshi Y; Yasui M; Suzuki R; Tsurumaki S; Tsutsumi Y
    Microvasc Res; 2022 Mar; 140():104281. PubMed ID: 34871649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cells stabilize flow in brain microvascular networks.
    Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P
    PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of capillary dilation on the distribution of red blood cells in artificial networks.
    Schmid F; Reichold J; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(7):H733-42. PubMed ID: 25617356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inversion of hematocrit partition at microfluidic bifurcations.
    Shen Z; Coupier G; Kaoui B; Polack B; Harting J; Misbah C; Podgorski T
    Microvasc Res; 2016 May; 105():40-6. PubMed ID: 26744089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study on flows of red blood cells with liposome-encapsulated hemoglobin at microvascular bifurcation.
    Hyakutake T; Tominaga S; Matsumoto T; Yanase S
    J Biomech Eng; 2008 Feb; 130(1):011014. PubMed ID: 18298190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local vs. Global Blood Flow Modulation in Artificial Microvascular Networks: Effects on Red Blood Cell Distribution and Partitioning.
    Mantegazza A; Ungari M; Clavica F; Obrist D
    Front Physiol; 2020; 11():566273. PubMed ID: 33123027
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Mantegazza A; Clavica F; Obrist D
    Biomicrofluidics; 2020 Jan; 14(1):014101. PubMed ID: 31933711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell lingering modulates hematocrit distribution in the microcirculation.
    Rashidi Y; Simionato G; Zhou Q; John T; Kihm A; Bendaoud M; Krüger T; Bernabeu MO; Kaestner L; Laschke MW; Menger MD; Wagner C; Darras A
    Biophys J; 2023 Apr; 122(8):1526-1537. PubMed ID: 36932676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees.
    Lykov K; Li X; Lei H; Pivkin IV; Karniadakis GE
    PLoS Comput Biol; 2015 Aug; 11(8):e1004410. PubMed ID: 26317829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries.
    Bateman RM; Sharpe MD; Jagger JE; Ellis CG
    Crit Care; 2015 Nov; 19():389. PubMed ID: 26537126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexity of vesicle microcirculation.
    Kaoui B; Tahiri N; Biben T; Ez-Zahraouy H; Benyoussef A; Biros G; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041906. PubMed ID: 22181174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth-dependent flow and pressure characteristics in cortical microvascular networks.
    Schmid F; Tsai PS; Kleinfeld D; Jenny P; Weber B
    PLoS Comput Biol; 2017 Feb; 13(2):e1005392. PubMed ID: 28196095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of red blood cell partitioning in an in vitro microvascular bifurcation.
    Pskowski A; Bagchi P; Zahn JD
    Artif Organs; 2021 Sep; 45(9):1083-1096. PubMed ID: 33590890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations.
    Barber JO; Alberding JP; Restrepo JM; Secomb TW
    Ann Biomed Eng; 2008 Oct; 36(10):1690-8. PubMed ID: 18686035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of red blood cell dynamics in microvessel bifurcations on the endothelial surface layer's resistance to flow and compression.
    Triebold C; Barber J
    Biomech Model Mechanobiol; 2022 Jun; 21(3):771-796. PubMed ID: 35146594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.