These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 27857195)
1. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Kandasamy V; Liu J; Dantoft SH; Solem C; Jensen PR Sci Rep; 2016 Nov; 6():36769. PubMed ID: 27857195 [TBL] [Abstract][Full Text] [Related]
2. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis. Liu J; Wang Z; Kandasamy V; Lee SY; Solem C; Jensen PR Metab Eng; 2017 Nov; 44():22-29. PubMed ID: 28890188 [TBL] [Abstract][Full Text] [Related]
3. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand. Liu J; Kandasamy V; Würtz A; Jensen PR; Solem C Appl Microbiol Biotechnol; 2016 Nov; 100(22):9509-9517. PubMed ID: 27344595 [TBL] [Abstract][Full Text] [Related]
4. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Li L; Li K; Wang Y; Chen C; Xu Y; Zhang L; Han B; Gao C; Tao F; Ma C; Xu P Metab Eng; 2015 Mar; 28():19-27. PubMed ID: 25499652 [TBL] [Abstract][Full Text] [Related]
6. Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol. Radoš D; Turner DL; Catarino T; Hoffart E; Neves AR; Eikmanns BJ; Blombach B; Santos H Appl Microbiol Biotechnol; 2016 Dec; 100(24):10573-10583. PubMed ID: 27687994 [TBL] [Abstract][Full Text] [Related]
7. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Bae SJ; Kim S; Hahn JS Sci Rep; 2016 Jun; 6():27667. PubMed ID: 27279026 [TBL] [Abstract][Full Text] [Related]
8. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Jantama K; Polyiam P; Khunnonkwao P; Chan S; Sangproo M; Khor K; Jantama SS; Kanchanatawee S Metab Eng; 2015 Jul; 30():16-26. PubMed ID: 25895450 [TBL] [Abstract][Full Text] [Related]
9. Efficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis. He Y; Chen F; Sun M; Gao H; Guo Z; Lin H; Chen J; Jin W; Yang Y; Zhang L; Yuan J Molecules; 2018 Mar; 23(3):. PubMed ID: 29562693 [TBL] [Abstract][Full Text] [Related]
10. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca. Lee YG; Bae JM; Kim SJ J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291 [TBL] [Abstract][Full Text] [Related]
11. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis. Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331 [TBL] [Abstract][Full Text] [Related]
12. Integrating biocompatible chemistry and manipulating cofactor partitioning in metabolically engineered Lactococcus lactis for fermentative production of (3S)-acetoin. Liu J; Solem C; Jensen PR Biotechnol Bioeng; 2016 Dec; 113(12):2744-2748. PubMed ID: 27344975 [TBL] [Abstract][Full Text] [Related]
13. A shortened, two-enzyme pathway for 2,3-butanediol production in Escherichia coli. Reshamwala SMS; Deb SS; Lali AM J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1273-1277. PubMed ID: 28547323 [TBL] [Abstract][Full Text] [Related]
14. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475 [TBL] [Abstract][Full Text] [Related]
15. Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Radoš D; Carvalho AL; Wieschalka S; Neves AR; Blombach B; Eikmanns BJ; Santos H Microb Cell Fact; 2015 Oct; 14():171. PubMed ID: 26511723 [TBL] [Abstract][Full Text] [Related]
16. From Waste to Taste-Efficient Production of the Butter Aroma Compound Acetoin from Low-Value Dairy Side Streams Using a Natural (Nonengineered) Liu JM; Chen L; Dorau R; Lillevang SK; Jensen PR; Solem C J Agric Food Chem; 2020 May; 68(21):5891-5899. PubMed ID: 32363876 [No Abstract] [Full Text] [Related]
17. Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase. Cho S; Kim T; Woo HM; Lee J; Kim Y; Um Y PLoS One; 2015; 10(9):e0138109. PubMed ID: 26368397 [TBL] [Abstract][Full Text] [Related]
18. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Zhang L; Xu Q; Zhan S; Li Y; Lin H; Sun S; Sha L; Hu K; Guan X; Shen Y Appl Microbiol Biotechnol; 2014 Feb; 98(3):1175-84. PubMed ID: 23666479 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol. Kou M; Cui Z; Fu J; Dai W; Wang Z; Chen T Microb Cell Fact; 2022 Jul; 21(1):150. PubMed ID: 35879766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]