BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27857225)

  • 1. Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors.
    Iamprasertkun P; Krittayavathananon A; Seubsai A; Chanlek N; Kidkhunthod P; Sangthong W; Maensiri S; Yimnirun R; Nilmoung S; Pannopard P; Ittisanronnachai S; Kongpatpanich K; Limtrakul J; Sawangphruk M
    Sci Rep; 2016 Nov; 6():37560. PubMed ID: 27857225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Asymmetric Supercapacitors of MnCo
    Pettong T; Iamprasertkun P; Krittayavathananon A; Sukha P; Sirisinudomkit P; Seubsai A; Chareonpanich M; Kongkachuichay P; Limtrakul J; Sawangphruk M
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):34045-34053. PubMed ID: 27960410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Energy Storage of Ni(OH)
    Sirisinudomkit P; Iamprasertkun P; Krittayavathananon A; Pettong T; Dittanet P; Sawangphruk M
    Sci Rep; 2017 Apr; 7(1):1124. PubMed ID: 28442728
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Suktha P; Chiochan P; Krittayavathananon A; Sarawutanukul S; Sethuraman S; Sawangphruk M
    RSC Adv; 2019 Sep; 9(49):28569-28575. PubMed ID: 35529617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen vacancies refilling and potassium ions intercalation of δ-manganese dioxide with high structural stability toward 2.3 V high voltage asymmetric supercapacitors.
    Zhao J; Liu X; Liu P; Deng K; Lv X; Tian W; Wang C; Tan S; Ji J
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):1039-1048. PubMed ID: 36209567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation intercalated one-dimensional manganese hydroxide nanorods and hierarchical mesoporous activated carbon nanosheets with ultrahigh capacitance retention asymmetric supercapacitors.
    Selvaraj AR; Kim HJ; Senthil K; Prabakar K
    J Colloid Interface Sci; 2020 Apr; 566():485-494. PubMed ID: 32035353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO
    Ghosh K; Yue CY; Sk MM; Jena RK
    ACS Appl Mater Interfaces; 2017 May; 9(18):15350-15363. PubMed ID: 28414212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha-MnO
    Poochai C; Sriprachuabwong C; Sodtipinta J; Lohitkarn J; Pasakon P; Primpray V; Maeboonruan N; Lomas T; Wisitsoraat A; Tuantranont A
    J Colloid Interface Sci; 2021 Feb; 583():734-745. PubMed ID: 33075606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced electrochemical performance of MnO
    Chen H; Lu X; Zhang L; Sui D; Wang C; Meng F; Qi W
    Dalton Trans; 2021 Jun; 50(25):8776-8784. PubMed ID: 34085673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-High Energy Density Hybrid Supercapacitors Using MnO
    Rani JR; Thangavel R; Kim M; Lee YS; Jang JH
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Battery-Type Supercapacitors Based on Self-Oriented Growth of Nanorods/Nanospheres Composite Assembled on Self-Standing Conductive GO/CNF Frameworks.
    Roy N; Rajasekhara Reddy G; Pallavolu MR; Nallapureddy RR; Dhananjaya M; Sai Kumar A; Banerjee AN; Min BK; Barai HR; Joo SW
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38940603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors.
    Li L; Li R; Gai S; Ding S; He F; Zhang M; Yang P
    Chemistry; 2015 May; 21(19):7119-26. PubMed ID: 25801647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.
    Wang W; Guo S; Bozhilov KN; Yan D; Ozkan M; Ozkan CS
    Small; 2013 Nov; 9(21):3714-21. PubMed ID: 23650047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Graphene-based Aerogel for Integrated 3D Asymmetric Supercapacitors with High Energy Density.
    Liang X; Tang LJ; Zhang YC; Zhu XD; Gao J
    Chem Asian J; 2024 May; 19(10):e202400243. PubMed ID: 38551466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors.
    Huang M; Zhang Y; Li F; Zhang L; Ruoff RS; Wen Z; Liu Q
    Sci Rep; 2014 Jan; 4():3878. PubMed ID: 24464344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge storage performances and mechanisms of MnO
    Tanggarnjanavalukul C; Phattharasupakun N; Kongpatpanich K; Sawangphruk M
    Nanoscale; 2017 Sep; 9(36):13630-13639. PubMed ID: 28876006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na
    Jabeen N; Hussain A; Xia Q; Sun S; Zhu J; Xia H
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28639392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterostructural Graphene Quantum Dot/MnO
    Jia H; Cai Y; Lin J; Liang H; Qi J; Cao J; Feng J; Fei W
    Adv Sci (Weinh); 2018 May; 5(5):1700887. PubMed ID: 29876214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ construction of binder-free MnO
    Abbas Q; Mateen A; Siyal SH; Hassan NU; Alothman AA; Ouladsmane M; Eldin SM; Ansari MZ; Javed MS
    Chemosphere; 2023 Feb; 313():137421. PubMed ID: 36455663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors.
    Peng L; Peng X; Liu B; Wu C; Xie Y; Yu G
    Nano Lett; 2013 May; 13(5):2151-7. PubMed ID: 23590256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.