BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27858021)

  • 1. Electrochemistry of Fe
    Zhang G; Tan SY; Patel AN; Unwin PR
    Phys Chem Chem Phys; 2016 Nov; 18(47):32387-32395. PubMed ID: 27858021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models.
    Zhang G; Cuharuc AS; Güell AG; Unwin PR
    Phys Chem Chem Phys; 2015 May; 17(17):11827-38. PubMed ID: 25869656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new view of electrochemistry at highly oriented pyrolytic graphite.
    Patel AN; Collignon MG; O'Connell MA; Hung WO; McKelvey K; Macpherson JV; Unwin PR
    J Am Chem Soc; 2012 Dec; 134(49):20117-30. PubMed ID: 23145936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine.
    Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR
    Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular functionalization of graphite surfaces: basal plane versus step edge electrochemical activity.
    Zhang G; Kirkman PM; Patel AN; Cuharuc AS; McKelvey K; Unwin PR
    J Am Chem Soc; 2014 Aug; 136(32):11444-51. PubMed ID: 25035922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.
    Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE
    Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide (NADH): comparison of highly oriented pyrolytic graphite (HOPG) and polycrystalline boron-doped diamond (pBDD) electrodes.
    Maddar FM; Lazenby RA; Patel AN; Unwin PR
    Phys Chem Chem Phys; 2016 Sep; 18(38):26404-26411. PubMed ID: 27711627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemistry of ferrocene derivatives on highly oriented pyrolytic graphite (HOPG): quantification and impacts of surface adsorption.
    Cuharuc AS; Zhang G; Unwin PR
    Phys Chem Chem Phys; 2016 Feb; 18(6):4966-77. PubMed ID: 26812483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic contamination of highly oriented pyrolytic graphite as studied by scanning electrochemical microscopy.
    Nioradze N; Chen R; Kurapati N; Khvataeva-Domanov A; Mabic S; Amemiya S
    Anal Chem; 2015 May; 87(9):4836-43. PubMed ID: 25843146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.
    Güell AG; Cuharuc AS; Kim YR; Zhang G; Tan SY; Ebejer N; Unwin PR
    ACS Nano; 2015 Apr; 9(4):3558-71. PubMed ID: 25758160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of levels of defect sites present in highly ordered pyrolytic graphite electrodes using capacitive and faradaic current components derived simultaneously from large-amplitude Fourier transformed ac voltammetric experiments.
    Lee CY; Bond AM
    Anal Chem; 2009 Jan; 81(2):584-94. PubMed ID: 19140776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic-complementary peptide-modified highly ordered pyrolytic graphite electrode for biosensor application.
    Yang H; Fung SY; Sun W; Mikkelsen S; Pritzker M; Chen P
    Biotechnol Prog; 2008; 24(4):964-71. PubMed ID: 19194905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthraquinonedisulfonate electrochemistry:  a comparison of glassy carbon, hydrogenated glassy carbon, highly oriented pyrolytic graphite, and diamond electrodes.
    Xu J; Chen Q; Swain GM
    Anal Chem; 1998 Aug; 70(15):3146-54. PubMed ID: 21644653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning micropipet contact method for high-resolution imaging of electrode surface redox activity.
    Williams CG; Edwards MA; Colley AL; Macpherson JV; Unwin PR
    Anal Chem; 2009 Apr; 81(7):2486-95. PubMed ID: 19265426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite.
    Gorodetsky AA; Barton JK
    Langmuir; 2006 Aug; 22(18):7917-22. PubMed ID: 16922584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study.
    Banks CE; Compton RG
    Analyst; 2005 Sep; 130(9):1232-9. PubMed ID: 16096667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of Asymmetry of Paired Nanogap Voltammograms Based on Scanning Electrochemical Microscopy: Contamination Not Adsorption.
    Chen R; Balla RJ; Li Z; Liu H; Amemiya S
    Anal Chem; 2016 Aug; 88(16):8323-31. PubMed ID: 27426255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Voltage Voltammetric Electrowetting of Graphite Surfaces by Ion Intercalation/Deintercalation.
    Zhang G; Walker M; Unwin PR
    Langmuir; 2016 Aug; 32(30):7476-84. PubMed ID: 27406680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure.
    Brownson DAC; Garcia-Miranda Ferrari A; Ghosh S; Kamruddin M; Iniesta J; Banks CE
    Nanoscale Adv; 2020 Nov; 2(11):5319-5328. PubMed ID: 36132042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.