These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27858175)

  • 1. An information-based machine learning approach to elasticity imaging.
    Hoerig C; Ghaboussi J; Insana MF
    Biomech Model Mechanobiol; 2017 Jun; 16(3):805-822. PubMed ID: 27858175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-Driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the Autoprogressive Method.
    Hoerig C; Ghaboussi J; Insana MF
    IEEE Trans Med Imaging; 2019 May; 38(5):1150-1160. PubMed ID: 30403625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-guided machine learning for 3-D quantitative quasi-static elasticity imaging.
    Hoerig C; Ghaboussi J; Insana MF
    Phys Med Biol; 2020 Mar; 65(6):065011. PubMed ID: 32045891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A data-driven approach to characterizing nonlinear elastic behavior of soft materials.
    Wang Y; Ghaboussi J; Hoerig C; Insana MF
    J Mech Behav Biomed Mater; 2022 Jun; 130():105178. PubMed ID: 35364365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio.
    Kamali A; Sarabian M; Laksari K
    Acta Biomater; 2023 Jan; 155():400-409. PubMed ID: 36402297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.
    Arbabi V; Pouran B; Campoli G; Weinans H; Zadpoor AA
    J Biomech; 2016 Mar; 49(5):631-637. PubMed ID: 26944689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic strain imaging and reconstructive elastography for biological tissue.
    Khaled W; Reichling S; Bruhns OT; Ermert H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e199-202. PubMed ID: 16857230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel ultrasound indentation system for measuring biomechanical properties of in vivo soft tissue.
    Han L; Noble JA; Burcher M
    Ultrasound Med Biol; 2003 Jun; 29(6):813-23. PubMed ID: 12837497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elasticity reconstruction from displacement and confidence measures of a multi-compressed ultrasound RF sequence.
    Li J; Cui Y; Kadour M; Noble JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):319-26. PubMed ID: 18334339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the hyperelastic properties of tissue slices with tumour inclusion.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2008 Dec; 53(24):7087-106. PubMed ID: 19015576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of estimating regional mechanical properties of cerebral aneurysms in vivo.
    Balocco S; Camara O; Vivas E; Sola T; Guimaraens L; Gratama van Andel HA; Majoie CB; Pozo JM; Bijnens BH; Frangi AF
    Med Phys; 2010 Apr; 37(4):1689-706. PubMed ID: 20443490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel machine learning based computational framework for homogenization of heterogeneous soft materials: application to liver tissue.
    Hashemi MS; Baniassadi M; Baghani M; George D; Remond Y; Sheidaei A
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1131-1142. PubMed ID: 31823106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force.
    McAleavey SA; Menon M; Orszulak J
    Ultrason Imaging; 2007 Apr; 29(2):87-104. PubMed ID: 17679324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic characterization of soft tissue from dynamic finite element models.
    Eskandari H; Salcudean SE; Rohling R; Ohayon J
    Phys Med Biol; 2008 Nov; 53(22):6569-90. PubMed ID: 18978443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.