BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27858514)

  • 1. Involvement of STH7 in light-adapted development in Arabidopsis thaliana promoted by both strigolactone and karrikin.
    Thussagunpanit J; Nagai Y; Nagae M; Mashiguchi K; Mitsuda N; Ohme-Takagi M; Nakano T; Nakamura H; Asami T
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):292-301. PubMed ID: 27858514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strigolactone and Karrikin Signaling Pathways Elicit Ubiquitination and Proteolysis of SMXL2 to Regulate Hypocotyl Elongation in Arabidopsis.
    Wang L; Xu Q; Yu H; Ma H; Li X; Yang J; Chu J; Xie Q; Wang Y; Smith SM; Li J; Xiong G; Wang B
    Plant Cell; 2020 Jul; 32(7):2251-2270. PubMed ID: 32358074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.
    Waters MT; Smith SM
    Mol Plant; 2013 Jan; 6(1):63-75. PubMed ID: 23142794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module.
    Bursch K; Niemann ET; Nelson DC; Johansson H
    Plant J; 2021 Sep; 107(5):1346-1362. PubMed ID: 34160854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis.
    Soundappan I; Bennett T; Morffy N; Liang Y; Stanga JP; Abbas A; Leyser O; Nelson DC
    Plant Cell; 2015 Nov; 27(11):3143-59. PubMed ID: 26546447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional redundancy in the control of seedling growth by the karrikin signaling pathway.
    Stanga JP; Morffy N; Nelson DC
    Planta; 2016 Jun; 243(6):1397-406. PubMed ID: 26754282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Karrikins force a rethink of strigolactone mode of action.
    Waters MT; Scaffidi A; Flematti GR; Smith SM
    Plant Signal Behav; 2012 Aug; 7(8):969-72. PubMed ID: 22827937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis.
    Wei CQ; Chien CW; Ai LF; Zhao J; Zhang Z; Li KH; Burlingame AL; Sun Y; Wang ZY
    J Genet Genomics; 2016 Sep; 43(9):555-563. PubMed ID: 27523280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Selaginella moellendorffii Ortholog of KARRIKIN INSENSITIVE2 Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or Strigolactones.
    Waters MT; Scaffidi A; Moulin SL; Sun YK; Flematti GR; Smith SM
    Plant Cell; 2015 Jul; 27(7):1925-44. PubMed ID: 26175507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling.
    Park YJ; Nam BE; Park CM
    J Integr Plant Biol; 2024 May; 66(5):865-882. PubMed ID: 38116738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana.
    Nelson DC; Scaffidi A; Dun EA; Waters MT; Flematti GR; Dixon KW; Beveridge CA; Ghisalberti EL; Smith SM
    Proc Natl Acad Sci U S A; 2011 May; 108(21):8897-902. PubMed ID: 21555559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis.
    Jia KP; Luo Q; He SB; Lu XD; Yang HQ
    Mol Plant; 2014 Mar; 7(3):528-40. PubMed ID: 24126495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A KARRIKIN INSENSITIVE2 paralog in lettuce mediates highly sensitive germination responses to karrikinolide.
    Martinez SE; Conn CE; Guercio AM; Sepulveda C; Fiscus CJ; Koenig D; Shabek N; Nelson DC
    Plant Physiol; 2022 Sep; 190(2):1440-1456. PubMed ID: 35809069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.
    Wang L; Waters MT; Smith SM
    New Phytol; 2018 Jul; 219(2):605-618. PubMed ID: 29726620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Karrikin perception and signalling.
    Waters MT; Nelson DC
    New Phytol; 2023 Mar; 237(5):1525-1541. PubMed ID: 36333982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy.
    Carbonnel S; Torabi S; Griesmann M; Bleek E; Tang Y; Buchka S; Basso V; Shindo M; Boyer FD; Wang TL; Udvardi M; Waters MT; Gutjahr C
    PLoS Genet; 2020 Dec; 16(12):e1009249. PubMed ID: 33370251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation.
    Tang Y; Liu X; Liu X; Li Y; Wu K; Hou X
    Mol Plant; 2017 Feb; 10(2):260-273. PubMed ID: 27876642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The karrikin response system of Arabidopsis.
    Waters MT; Scaffidi A; Sun YK; Flematti GR; Smith SM
    Plant J; 2014 Aug; 79(4):623-31. PubMed ID: 24433542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The G-Protein Ī² Subunit AGB1 Promotes Hypocotyl Elongation through Inhibiting Transcription Activation Function of BBX21 inĀ Arabidopsis.
    Xu DB; Gao SQ; Ma YN; Wang XT; Feng L; Li LC; Xu ZS; Chen YF; Chen M; Ma YZ
    Mol Plant; 2017 Sep; 10(9):1206-1223. PubMed ID: 28827171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CYP707As are effectors of karrikin and strigolactone signalling pathways in Arabidopsis thaliana and parasitic plants.
    Brun G; Thoiron S; Braem L; Pouvreau JB; Montiel G; Lechat MM; Simier P; Gevaert K; Goormachtig S; Delavault P
    Plant Cell Environ; 2019 Sep; 42(9):2612-2626. PubMed ID: 31134630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.