These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 27858514)
1. Involvement of STH7 in light-adapted development in Arabidopsis thaliana promoted by both strigolactone and karrikin. Thussagunpanit J; Nagai Y; Nagae M; Mashiguchi K; Mitsuda N; Ohme-Takagi M; Nakano T; Nakamura H; Asami T Biosci Biotechnol Biochem; 2017 Feb; 81(2):292-301. PubMed ID: 27858514 [TBL] [Abstract][Full Text] [Related]
2. Strigolactone and Karrikin Signaling Pathways Elicit Ubiquitination and Proteolysis of SMXL2 to Regulate Hypocotyl Elongation in Arabidopsis. Wang L; Xu Q; Yu H; Ma H; Li X; Yang J; Chu J; Xie Q; Wang Y; Smith SM; Li J; Xiong G; Wang B Plant Cell; 2020 Jul; 32(7):2251-2270. PubMed ID: 32358074 [TBL] [Abstract][Full Text] [Related]
3. KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Waters MT; Smith SM Mol Plant; 2013 Jan; 6(1):63-75. PubMed ID: 23142794 [TBL] [Abstract][Full Text] [Related]
4. Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module. Bursch K; Niemann ET; Nelson DC; Johansson H Plant J; 2021 Sep; 107(5):1346-1362. PubMed ID: 34160854 [TBL] [Abstract][Full Text] [Related]
5. SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis. Soundappan I; Bennett T; Morffy N; Liang Y; Stanga JP; Abbas A; Leyser O; Nelson DC Plant Cell; 2015 Nov; 27(11):3143-59. PubMed ID: 26546447 [TBL] [Abstract][Full Text] [Related]
6. Functional redundancy in the control of seedling growth by the karrikin signaling pathway. Stanga JP; Morffy N; Nelson DC Planta; 2016 Jun; 243(6):1397-406. PubMed ID: 26754282 [TBL] [Abstract][Full Text] [Related]
7. Non-transcriptional regulatory activity of SMAX1 and SMXL2 mediates karrikin-regulated seedling response to red light in Arabidopsis. Chang W; Qiao Q; Li Q; Li X; Li Y; Huang X; Wang Y; Li J; Wang B; Wang L Mol Plant; 2024 Jul; 17(7):1054-1072. PubMed ID: 38807366 [TBL] [Abstract][Full Text] [Related]
8. Karrikins force a rethink of strigolactone mode of action. Waters MT; Scaffidi A; Flematti GR; Smith SM Plant Signal Behav; 2012 Aug; 7(8):969-72. PubMed ID: 22827937 [TBL] [Abstract][Full Text] [Related]
9. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. Wei CQ; Chien CW; Ai LF; Zhao J; Zhang Z; Li KH; Burlingame AL; Sun Y; Wang ZY J Genet Genomics; 2016 Sep; 43(9):555-563. PubMed ID: 27523280 [TBL] [Abstract][Full Text] [Related]
10. A Selaginella moellendorffii Ortholog of KARRIKIN INSENSITIVE2 Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or Strigolactones. Waters MT; Scaffidi A; Moulin SL; Sun YK; Flematti GR; Smith SM Plant Cell; 2015 Jul; 27(7):1925-44. PubMed ID: 26175507 [TBL] [Abstract][Full Text] [Related]
11. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. Park YJ; Nam BE; Park CM J Integr Plant Biol; 2024 May; 66(5):865-882. PubMed ID: 38116738 [TBL] [Abstract][Full Text] [Related]
12. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Nelson DC; Scaffidi A; Dun EA; Waters MT; Flematti GR; Dixon KW; Beveridge CA; Ghisalberti EL; Smith SM Proc Natl Acad Sci U S A; 2011 May; 108(21):8897-902. PubMed ID: 21555559 [TBL] [Abstract][Full Text] [Related]
13. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Jia KP; Luo Q; He SB; Lu XD; Yang HQ Mol Plant; 2014 Mar; 7(3):528-40. PubMed ID: 24126495 [TBL] [Abstract][Full Text] [Related]
14. A KARRIKIN INSENSITIVE2 paralog in lettuce mediates highly sensitive germination responses to karrikinolide. Martinez SE; Conn CE; Guercio AM; Sepulveda C; Fiscus CJ; Koenig D; Shabek N; Nelson DC Plant Physiol; 2022 Sep; 190(2):1440-1456. PubMed ID: 35809069 [TBL] [Abstract][Full Text] [Related]
15. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. Wang L; Waters MT; Smith SM New Phytol; 2018 Jul; 219(2):605-618. PubMed ID: 29726620 [TBL] [Abstract][Full Text] [Related]
16. Karrikin perception and signalling. Waters MT; Nelson DC New Phytol; 2023 Mar; 237(5):1525-1541. PubMed ID: 36333982 [TBL] [Abstract][Full Text] [Related]
17. Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. Carbonnel S; Torabi S; Griesmann M; Bleek E; Tang Y; Buchka S; Basso V; Shindo M; Boyer FD; Wang TL; Udvardi M; Waters MT; Gutjahr C PLoS Genet; 2020 Dec; 16(12):e1009249. PubMed ID: 33370251 [TBL] [Abstract][Full Text] [Related]
18. Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation. Tang Y; Liu X; Liu X; Li Y; Wu K; Hou X Mol Plant; 2017 Feb; 10(2):260-273. PubMed ID: 27876642 [TBL] [Abstract][Full Text] [Related]
19. The karrikin response system of Arabidopsis. Waters MT; Scaffidi A; Sun YK; Flematti GR; Smith SM Plant J; 2014 Aug; 79(4):623-31. PubMed ID: 24433542 [TBL] [Abstract][Full Text] [Related]
20. The G-Protein Ī² Subunit AGB1 Promotes Hypocotyl Elongation through Inhibiting Transcription Activation Function of BBX21 inĀ Arabidopsis. Xu DB; Gao SQ; Ma YN; Wang XT; Feng L; Li LC; Xu ZS; Chen YF; Chen M; Ma YZ Mol Plant; 2017 Sep; 10(9):1206-1223. PubMed ID: 28827171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]