These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 27858985)
1. Analysis of ribosomal inter-subunit sites as targets for complementary oligonucleotides. Thoduka SG; Zaleski PA; Dąbrowska Z; Równicki M; Stróżecka J; Górska A; Olejniczak M; Trylska J Biopolymers; 2017 Apr; 107(4):. PubMed ID: 27858985 [TBL] [Abstract][Full Text] [Related]
2. Targeting the A site RNA of the Escherichia coli ribosomal 30 S subunit by 2'-O-methyl oligoribonucleotides: a quantitative equilibrium dialysis binding assay and differential effects of aminoglycoside antibiotics. Abelian A; Walsh AP; Lentzen G; Aboul-Ela F; Gait MJ Biochem J; 2004 Oct; 383(Pt 2):201-8. PubMed ID: 15294017 [TBL] [Abstract][Full Text] [Related]
3. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation. Mallik S; Kundu S J Biomol Struct Dyn; 2015; 33(3):639-56. PubMed ID: 24697502 [TBL] [Abstract][Full Text] [Related]
4. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling. Das D; Samanta D; Bhattacharya A; Basu A; Das A; Ghosh J; Chakrabarti A; Das Gupta C PLoS One; 2017; 12(1):e0170333. PubMed ID: 28099529 [TBL] [Abstract][Full Text] [Related]
5. Irreversible chemical steps control intersubunit dynamics during translation. Marshall RA; Dorywalska M; Puglisi JD Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15364-9. PubMed ID: 18824686 [TBL] [Abstract][Full Text] [Related]
6. Subribosomal particle analysis reveals the stages of bacterial ribosome assembly at which rRNA nucleotides are modified. Siibak T; Remme J RNA; 2010 Oct; 16(10):2023-32. PubMed ID: 20719918 [TBL] [Abstract][Full Text] [Related]
7. Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome. Li X; Sun Q; Jiang C; Yang K; Hung LW; Zhang J; Sacchettini JC Structure; 2015 Oct; 23(10):1858-1865. PubMed ID: 26299947 [TBL] [Abstract][Full Text] [Related]
8. Quantitative proteomic analysis of ribosome assembly and turnover in vivo. Sykes MT; Shajani Z; Sperling E; Beck AH; Williamson JR J Mol Biol; 2010 Oct; 403(3):331-45. PubMed ID: 20709079 [TBL] [Abstract][Full Text] [Related]
9. Helix 69 of Escherichia coli 23S ribosomal RNA as a peptide nucleic acid target. Kulik M; Markowska-Zagrajek A; Wojciechowska M; Grzela R; Wituła T; Trylska J Biochimie; 2017 Jul; 138():32-42. PubMed ID: 28396015 [TBL] [Abstract][Full Text] [Related]
10. The RimP protein is important for maturation of the 30S ribosomal subunit. Nord S; Bylund GO; Lövgren JM; Wikström PM J Mol Biol; 2009 Feb; 386(3):742-53. PubMed ID: 19150615 [TBL] [Abstract][Full Text] [Related]
11. Nonbridging phosphate oxygens in 16S rRNA important for 30S subunit assembly and association with the 50S ribosomal subunit. Ghosh S; Joseph S RNA; 2005 May; 11(5):657-67. PubMed ID: 15811917 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a bioactive pactamycin analog bound to the 30S ribosomal subunit. Tourigny DS; Fernández IS; Kelley AC; Vakiti RR; Chattopadhyay AK; Dorich S; Hanessian S; Ramakrishnan V J Mol Biol; 2013 Oct; 425(20):3907-10. PubMed ID: 23702293 [TBL] [Abstract][Full Text] [Related]
13. Binding sites of the antibiotics pactamycin and celesticetin on ribosomal RNAs. Egebjerg J; Garrett RA Biochimie; 1991; 73(7-8):1145-9. PubMed ID: 1720667 [TBL] [Abstract][Full Text] [Related]
14. Mutations in the intersubunit bridge regions of 16S rRNA affect decoding and subunit-subunit interactions on the 70S ribosome. Sun Q; Vila-Sanjurjo A; O'Connor M Nucleic Acids Res; 2011 Apr; 39(8):3321-30. PubMed ID: 21138965 [TBL] [Abstract][Full Text] [Related]
15. In vitro protein folding by E. coli ribosome: unfolded protein splitting 70S to interact with 50S subunit. Basu A; Samanta D; Das D; Chowdhury S; Bhattacharya A; Ghosh J; Das A; Dasgupta C Biochem Biophys Res Commun; 2008 Feb; 366(2):598-603. PubMed ID: 18068121 [TBL] [Abstract][Full Text] [Related]
16. Role of pseudouridine in structural rearrangements of helix 69 during bacterial ribosome assembly. Sakakibara Y; Chow CS ACS Chem Biol; 2012 May; 7(5):871-8. PubMed ID: 22324880 [TBL] [Abstract][Full Text] [Related]
17. Allosteric control of the ribosome by small-molecule antibiotics. Wang L; Pulk A; Wasserman MR; Feldman MB; Altman RB; Cate JH; Blanchard SC Nat Struct Mol Biol; 2012 Sep; 19(9):957-63. PubMed ID: 22902368 [TBL] [Abstract][Full Text] [Related]
18. In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. McGinnis JL; Liu Q; Lavender CA; Devaraj A; McClory SP; Fredrick K; Weeks KM Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2425-30. PubMed ID: 25675474 [TBL] [Abstract][Full Text] [Related]
19. Effects of the ribosomal subunit association on the chemical modification of the 16S and 23S RNAs from Escherichia coli. Meier N; Wagner R Eur J Biochem; 1985 Jan; 146(1):83-7. PubMed ID: 2578388 [TBL] [Abstract][Full Text] [Related]
20. Chemical probing for examining the structure of modified RNAs and ligand binding to RNA. Waduge P; Sakakibara Y; Chow CS Methods; 2019 Mar; 156():110-120. PubMed ID: 30391513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]