These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 27859138)
41. The catalase-peroxidase of Synechococcus PCC 7942: purification, nucleotide sequence analysis and expression in Escherichia coli. Mutsuda M; Ishikawa T; Takeda T; Shigeoka S Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):251-7. PubMed ID: 8645214 [TBL] [Abstract][Full Text] [Related]
42. The reaction mechanisms of heme catalases: an atomistic view by ab initio molecular dynamics. Alfonso-Prieto M; Vidossich P; Rovira C Arch Biochem Biophys; 2012 Sep; 525(2):121-30. PubMed ID: 22516655 [TBL] [Abstract][Full Text] [Related]
43. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I. Regelsberger G; Jakopitsch C; Engleder M; Rüker F; Peschek GA; Obinger C Biochemistry; 1999 Aug; 38(32):10480-8. PubMed ID: 10441144 [TBL] [Abstract][Full Text] [Related]
44. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Poole LB Arch Biochem Biophys; 2005 Jan; 433(1):240-54. PubMed ID: 15581580 [TBL] [Abstract][Full Text] [Related]
45. Reduction of hydrogen peroxide in gram-negative bacteria - bacterial peroxidases. Nóbrega CS; Pauleta SR Adv Microb Physiol; 2019; 74():415-464. PubMed ID: 31126534 [TBL] [Abstract][Full Text] [Related]
46. Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis. Lama A; Pawaria S; Dikshit KL FEBS Lett; 2006 Jul; 580(17):4031-41. PubMed ID: 16814781 [TBL] [Abstract][Full Text] [Related]
47. A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase. Kitajima S; Kurioka M; Yoshimoto T; Shindo M; Kanaori K; Tajima K; Oda K FEBS J; 2008 Feb; 275(3):470-80. PubMed ID: 18167143 [TBL] [Abstract][Full Text] [Related]
48. Marine teleost ortholog of catalase from rock bream (Oplegnathus fasciatus): molecular perspectives from genomic organization to enzymatic behavior with respect to its potent antioxidant properties. Elvitigala DA; Premachandra HK; Whang I; Priyathilaka TT; Kim E; Lim BS; Jung HB; Yeo SY; Park HC; Lee J Fish Shellfish Immunol; 2013 Oct; 35(4):1086-96. PubMed ID: 23872475 [TBL] [Abstract][Full Text] [Related]
51. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy. Loewen PC; Villanueva J; Switala J; Donald LJ; Ivancich A Proteins; 2015 May; 83(5):853-66. PubMed ID: 25663126 [TBL] [Abstract][Full Text] [Related]
52. Purification and physical-chemical characterization of the three hydroperoxidases from the symbiotic bacterium Sinorhizobium meliloti. Ardissone S; Frendo P; Laurenti E; Jantschko W; Obinger C; Puppo A; Ferrari RP Biochemistry; 2004 Oct; 43(39):12692-9. PubMed ID: 15449959 [TBL] [Abstract][Full Text] [Related]
53. HTHP: a novel class of hexameric, tyrosine-coordinated heme proteins. Jeoung JH; Pippig DA; Martins BM; Wagener N; Dobbek H J Mol Biol; 2007 May; 368(4):1122-31. PubMed ID: 17395199 [TBL] [Abstract][Full Text] [Related]
54. Vital roles of an interhelical insertion in catalase-peroxidase bifunctionality. Li Y; Goodwin DC Biochem Biophys Res Commun; 2004 Jun; 318(4):970-6. PubMed ID: 15147967 [TBL] [Abstract][Full Text] [Related]
55. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Mishra S; Imlay J Arch Biochem Biophys; 2012 Sep; 525(2):145-60. PubMed ID: 22609271 [TBL] [Abstract][Full Text] [Related]
56. Characterization of two catalase-peroxidase-encoding genes in Fusarium verticillioides reveals differential responses to in vitro versus in planta oxidative challenges. Gao S; Gold SE; Glenn AE Mol Plant Pathol; 2018 May; 19(5):1127-1139. PubMed ID: 28802018 [TBL] [Abstract][Full Text] [Related]
57. The heme-independent manganese-peroxidase activity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB. Zou P; Schrempf H Eur J Biochem; 2000 May; 267(10):2840-9. PubMed ID: 10806381 [TBL] [Abstract][Full Text] [Related]
58. Active site structure of the catalase-peroxidases from Mycobacterium tuberculosis and Escherichia coli by extended X-ray absorption fine structure analysis. Powers L; Hillar A; Loewen PC Biochim Biophys Acta; 2001 Mar; 1546(1):44-54. PubMed ID: 11257507 [TBL] [Abstract][Full Text] [Related]
59. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Chuawong P; Hendrickson TL Biochemistry; 2006 Jul; 45(26):8079-87. PubMed ID: 16800632 [TBL] [Abstract][Full Text] [Related]
60. Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase. Obinger C; Maj M; Nicholls P; Loewen P Arch Biochem Biophys; 1997 Jun; 342(1):58-67. PubMed ID: 9185614 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]