These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27859200)

  • 1. Terrestrial support of aquatic food webs depends on light inputs: a geographically-replicated test using tank bromeliads.
    Farjalla VF; González AL; Céréghino R; Dézerald O; Marino NA; Piccoli GC; Richardson BA; Richardson MJ; Romero GQ; Srivastava DS
    Ecology; 2016 Aug; 97(8):2147-2156. PubMed ID: 27859200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of resource availability and hydrological regime on autochthonous and allochthonous carbon in the food web of a large cross-border river (China).
    Zheng Y; Niu J; Zhou Q; Xie C; Ke Z; Li D; Gao Y
    Sci Total Environ; 2018 Jan; 612():501-512. PubMed ID: 28865268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen.
    Doucett RR; Marks JC; Blinn DW; Caron M; Hungate BA
    Ecology; 2007 Jun; 88(6):1587-92. PubMed ID: 17601150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling the role of allochthonous aquatic resources to food web structure in a tropical riparian forest.
    Recalde FC; Postali TC; Romero GQ
    J Anim Ecol; 2016 Mar; 85(2):525-36. PubMed ID: 26590144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terrestrial subsidies to lake food webs: an experimental approach.
    Bartels P; Cucherousset J; Gudasz C; Jansson M; Karlsson J; Persson L; Premke K; Rubach A; Steger K; Tranvik LJ; Eklöv P
    Oecologia; 2012 Mar; 168(3):807-18. PubMed ID: 21971586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terrestrial vertebrate predators drive the structure and functioning of aquatic food webs.
    Breviglieri CPB; Romero GQ
    Ecology; 2017 Aug; 98(8):2069-2080. PubMed ID: 28464251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hurricane disturbance drives trophic changes in neotropical mountain stream food webs.
    Gutiérrez-Fonseca PE; Pringle CM; Ramírez A; Gómez JE; García P
    Ecology; 2024 Jan; 105(1):e4202. PubMed ID: 37926483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stream food webs in tropical mountains rely on allochthonous carbon regardless of land use.
    Ramírez A; Vázquez G; Sosa V; García P; Castillo G; García-Franco J; Martínez ML; Mehltreter K; Pineda E; Alvarado-Barrientos MS; Escobar F; Valdespino C; Campos A
    PLoS One; 2023; 18(12):e0295738. PubMed ID: 38100504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large herbivorous wildlife and livestock differentially influence the relative importance of different sources of energy for riverine food webs.
    Masese FO; Fuss T; Bistarelli LT; Buchen-Tschiskale C; Singer G
    Sci Total Environ; 2022 Jul; 828():154452. PubMed ID: 35278569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of food resource assimilation by stream insects along a tropical elevation gradient.
    Atkinson CL; Encalada AC; Rugenski AT; Thomas SA; Landeira-Dabarca A; Poff NL; Flecker AS
    Oecologia; 2018 Jul; 187(3):731-744. PubMed ID: 29700633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autochthonous resources are the main driver of consumer production in dystrophic boreal lakes.
    Lau DC; Sundh I; Vrede T; Pickova J; Goedkoop W
    Ecology; 2014 Jun; 95(6):1506-19. PubMed ID: 25039216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body size drives allochthony in food webs of tropical rivers.
    Jardine TD; Rayner TS; Pettit NE; Valdez D; Ward DP; Lindner G; Douglas MM; Bunn SE
    Oecologia; 2017 Feb; 183(2):505-517. PubMed ID: 27896479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An assessment of assumptions and uncertainty in deuterium-based estimates of terrestrial subsidies to aquatic consumers.
    Brett MT; Holtgrieve GW; Schindler DE
    Ecology; 2018 May; 99(5):1073-1088. PubMed ID: 29714826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allochthonous aquatic subsidies alleviate predation pressure in terrestrial ecosystems.
    Recalde FC; Breviglieri CPB; Romero GQ
    Ecology; 2020 Aug; 101(8):e03074. PubMed ID: 32304220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terrestrial contributions to Afrotropical aquatic food webs: The Congo River case.
    Soto DX; Decru E; Snoeks J; Verheyen E; Van de Walle L; Bamps J; Mambo T; Bouillon S
    Ecol Evol; 2019 Sep; 9(18):10746-10757. PubMed ID: 31624578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of predatory ants within and across ecosystems in bromeliad food webs.
    Gonçalves AZ; Srivastava DS; Oliveira PS; Romero GQ
    J Anim Ecol; 2017 Jul; 86(4):790-799. PubMed ID: 28342283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.
    Kautza A; Mazeika S; Sullivan P
    Ecology; 2016 Mar; 97(3):694-705. PubMed ID: 27197396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased reliance of stream macroinvertebrates on terrestrial food sources linked to forest management intensity.
    Erdozain M; Kidd K; Kreutzweiser D; Sibley P
    Ecol Appl; 2019 Jun; 29(4):e01889. PubMed ID: 30929306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages.
    Kraus JM; Vonesh JR
    Oecologia; 2012 Dec; 170(4):1111-22. PubMed ID: 22707036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terrestrial contributions to the aquatic food web in the middle Yangtze River.
    Wang J; Gu B; Huang J; Han X; Lin G; Zheng F; Li Y
    PLoS One; 2014; 9(7):e102473. PubMed ID: 25047656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.