BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27859362)

  • 1. Citral stabilization and characterization of nanoemulsions stabilized by a mixture of gelatin and Tween 20 in an acidic system.
    Tian H; Li D; Xu T; Hu J; Rong Y; Zhao B
    J Sci Food Agric; 2017 Jul; 97(9):2991-2998. PubMed ID: 27859362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH.
    Perugini L; Cinelli G; Cofelice M; Ceglie A; Lopez F; Cuomo F
    Colloids Surf B Biointerfaces; 2018 Aug; 168():163-168. PubMed ID: 29433910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gypenosides as natural emulsifiers for oil-in-water nanoemulsions loaded with astaxanthin: Insights of formulation, stability and release properties.
    Chen Z; Shu G; Taarji N; Barrow CJ; Nakajima M; Khalid N; Neves MA
    Food Chem; 2018 Sep; 261():322-328. PubMed ID: 29739600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions.
    Choi SJ; Decker EA; Henson L; Popplewell LM; McClements DJ
    J Food Sci; 2010 Aug; 75(6):C536-40. PubMed ID: 20722908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of citral in oil-in-water emulsions prepared with medium-chain triacylglycerols and triacetin.
    Choi SJ; Decker EA; Henson L; Popplewell LM; McClements DJ
    J Agric Food Chem; 2009 Dec; 57(23):11349-53. PubMed ID: 19891478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation.
    Kharat M; Zhang G; McClements DJ
    Food Res Int; 2018 Sep; 111():178-186. PubMed ID: 30007674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ubiquinol-10 on citral stability and off-flavor formation in oil-in-water (O/W) nanoemulsions.
    Zhao Q; Ho CT; Huang Q
    J Agric Food Chem; 2013 Aug; 61(31):7462-9. PubMed ID: 23855652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation.
    Liu F; Zhu Z; Ma C; Luo X; Bai L; Decker EA; Gao Y; McClements DJ
    J Agric Food Chem; 2016 Dec; 64(50):9532-9541. PubMed ID: 27936671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions.
    Djordjevic D; Cercaci L; Alamed J; McClements DJ; Decker EA
    J Agric Food Chem; 2007 May; 55(9):3585-91. PubMed ID: 17419641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of citral degradation by oil-in-water nanoemulsions combined with antioxidants.
    Yang X; Tian H; Ho CT; Huang Q
    J Agric Food Chem; 2011 Jun; 59(11):6113-9. PubMed ID: 21517071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.
    Chang Y; McClements DJ
    J Agric Food Chem; 2014 Mar; 62(10):2306-12. PubMed ID: 24564878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Fucoxanthin Nanoemulsion Stabilized by Natural Emulsifiers: Fucoidan, Sodium Caseinate, and Gum Arabic.
    Oliyaei N; Moosavi-Nasab M; Tanideh N
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil.
    Lu WC; Huang DW; Wang CR; Yeh CH; Tsai JC; Huang YT; Li PH
    J Food Drug Anal; 2018 Jan; 26(1):82-89. PubMed ID: 29389592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food-grade Pickering emulsions stabilised with solid lipid particles.
    Pawlik A; Kurukji D; Norton I; Spyropoulos F
    Food Funct; 2016 Jun; 7(6):2712-21. PubMed ID: 27198879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolysis of whey protein isolates in nanoemulsion systems: Impact of nanoemulsification and additional synthetic emulsifiers.
    Szumała P; Pacyna-Kuchta A; Wasik A
    Food Chem; 2021 Jul; 351():129356. PubMed ID: 33647693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The composition and oxidative stability of vegetarian omega-3 algal oil nanoemulsions suitable for functional food enrichment.
    Lane KE; Zhou Q; Robinson S; Li W
    J Sci Food Agric; 2020 Jan; 100(2):695-704. PubMed ID: 31602647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels.
    Zamani S; Malchione N; Selig MJ; Abbaspourrad A
    Food Funct; 2018 Feb; 9(2):982-990. PubMed ID: 29334398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology.
    Karadag A; Yang X; Ozcelik B; Huang Q
    J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation mechanism of p-methylacetophenone from citral via a tert-alkoxy radical intermediate.
    Ueno T; Masuda H; Ho CT
    J Agric Food Chem; 2004 Sep; 52(18):5677-84. PubMed ID: 15373409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers.
    Shu G; Khalid N; Chen Z; Neves MA; Barrow CJ; Nakajima M
    Food Chem; 2018 Jul; 255():67-74. PubMed ID: 29571499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.