These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27859435)

  • 41. Computational simulation of the docking of Prochlorothrix hollandica plastocyanin to potosystem I: modeling the electron transfer complex.
    Myshkin E; Leontis NB; Bullerjahn GS
    Biophys J; 2002 Jun; 82(6):3305-13. PubMed ID: 12023253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Brownian dynamics simulations of protein-protein interactions in photosynthetic electron transport chain].
    Khruschev SS; Abaturova AM; Diakonova AN; Fedorov VA; Ustinin DM; Kovalenko IB; Riznichenko GY; Rubin AB
    Biofizika; 2015; 60(2):270-92. PubMed ID: 26016024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Free energy landscapes of prototropic tautomerism in pyridoxal 5'-phosphate schiff bases at the active site of an enzyme in aqueous medium.
    Soniya K; Chandra A
    J Comput Chem; 2018 Aug; 39(21):1629-1638. PubMed ID: 29756317
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interplay of flavin's redox states and protein dynamics: an insight from QM/MM simulations of dihydronicotinamide riboside quinone oxidoreductase 2.
    Mueller RM; North MA; Yang C; Hati S; Bhattacharyya S
    J Phys Chem B; 2011 Apr; 115(13):3632-41. PubMed ID: 21410212
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiconfigurational g tensor calculations as a probe for the covalency of the copper-ligand bonds in copper(II) complexes: [CuCl4]2-, [Cu(NH3)4]2+, and plastocyanin.
    Vancoillie S; Pierloot K
    J Phys Chem A; 2008 May; 112(17):4011-9. PubMed ID: 18386853
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein strain in blue copper proteins studied by free energy perturbations.
    De Kerpel JO; Ryde U
    Proteins; 1999 Aug; 36(2):157-74. PubMed ID: 10398364
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal structure determinations of oxidized and reduced plastocyanin from the cyanobacterium Synechococcus sp. PCC 7942.
    Inoue T; Sugawara H; Hamanaka S; Tsukui H; Suzuki E; Kohzuma T; Kai Y
    Biochemistry; 1999 May; 38(19):6063-9. PubMed ID: 10320332
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transient binding of plastocyanin to its physiological redox partners modifies the copper site geometry.
    Díaz-Moreno I; Díaz-Quintana A; Díaz-Moreno S; Subías G; De la Rosa MA
    FEBS Lett; 2006 Nov; 580(26):6187-94. PubMed ID: 17064694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the contributions of diffusion and thermal activation to electron transfer between Phormidium laminosum plastocyanin and cytochrome f: Brownian dynamics simulations with explicit modeling of nonpolar desolvation interactions and electron transfer events.
    Gabdoulline RR; Wade RC
    J Am Chem Soc; 2009 Jul; 131(26):9230-8. PubMed ID: 19518050
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics of electron transfer between plastocyanin and the soluble CuA domain of cyanobacterial cytochrome c oxidase.
    Paumann M; Bernroitner M; Lubura B; Peer M; Jakopitsch C; Furtmüller PG; Peschek GA; Obinger C
    FEMS Microbiol Lett; 2004 Oct; 239(2):301-7. PubMed ID: 15476980
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of proteolysis in matrix metalloproteinase-2 revealed by QM/MM modeling.
    Vasilevskaya T; Khrenova MG; Nemukhin AV; Thiel W
    J Comput Chem; 2015 Aug; 36(21):1621-30. PubMed ID: 26132652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics.
    Ubbink M; Ejdebäck M; Karlsson BG; Bendall DS
    Structure; 1998 Mar; 6(3):323-35. PubMed ID: 9551554
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light-induced charge separation between plastocyanin and the iron-sulfur clusters FA and FB in the complex of plastocyanin and photosystem I.
    Hippler M; Riedel A; Schröer U; Nitschke W; Haehnel W
    Arch Biochem Biophys; 1996 Jun; 330(2):414-8. PubMed ID: 8660673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values.
    Guss JM; Harrowell PR; Murata M; Norris VA; Freeman HC
    J Mol Biol; 1986 Nov; 192(2):361-87. PubMed ID: 3560221
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Redox entropy of plastocyanin: developing a microscopic view of mesoscopic polar solvation.
    LeBard DN; Matyushov DV
    J Chem Phys; 2008 Apr; 128(15):155106. PubMed ID: 18433287
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular dynamics simulation and essential dynamics study of mutated plastocyanin: structural, dynamical and functional effects of a disulfide bridge insertion at the protein surface.
    Arcangeli C; Bizzarri AR; Cannistraro S
    Biophys Chem; 2001 Sep; 92(3):183-99. PubMed ID: 11583835
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformational changes in plastocyanin.
    Draheim JE; Anderson GP; Pan RL; Rellick LM; Duane JW; Gross EL
    Arch Biochem Biophys; 1985 Feb; 237(1):110-7. PubMed ID: 3970540
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo.
    Soriano GM; Ponamarev MV; Piskorowski RA; Cramer WA
    Biochemistry; 1998 Oct; 37(43):15120-8. PubMed ID: 9790675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.