BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27859467)

  • 1. What drives parallel evolution?: How population size and mutational variation contribute to repeated evolution.
    Bailey SF; Blanquart F; Bataillon T; Kassen R
    Bioessays; 2017 Jan; 39(1):1-9. PubMed ID: 27859467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of selection environment on the probability of parallel evolution.
    Bailey SF; Rodrigue N; Kassen R
    Mol Biol Evol; 2015 Jun; 32(6):1436-48. PubMed ID: 25761765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Drivers of Parallel Evolution: A Regression Model Approach.
    Bailey SF; Guo Q; Bataillon T
    Genome Biol Evol; 2018 Oct; 10(10):2801-2812. PubMed ID: 30252076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae.
    Burke MK; Liti G; Long AD
    Mol Biol Evol; 2014 Dec; 31(12):3228-39. PubMed ID: 25172959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical measures of mutational effects define neutral models of regulatory evolution in
    Hodgins-Davis A; Duveau F; Walker EA; Wittkopp PJ
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21085-21093. PubMed ID: 31570626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution favors protein mutational robustness in sufficiently large populations.
    Bloom JD; Lu Z; Chen D; Raval A; Venturelli OS; Arnold FH
    BMC Biol; 2007 Jul; 5():29. PubMed ID: 17640347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of population size and mutation rate on the evolution of mutational robustness.
    Elena SF; Wilke CO; Ofria C; Lenski RE
    Evolution; 2007 Mar; 61(3):666-74. PubMed ID: 17348929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphism, divergence, and the role of recombination in Saccharomyces cerevisiae genome evolution.
    Cutter AD; Moses AM
    Mol Biol Evol; 2011 May; 28(5):1745-54. PubMed ID: 21199893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation-Driven Parallel Evolution during Viral Adaptation.
    Sackman AM; McGee LW; Morrison AJ; Pierce J; Anisman J; Hamilton H; Sanderbeck S; Newman C; Rokyta DR
    Mol Biol Evol; 2017 Dec; 34(12):3243-3253. PubMed ID: 29029274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fisher's model and the genomics of adaptation: restricted pleiotropy, heterogenous mutation, and parallel evolution.
    Chevin LM; Martin G; Lenormand T
    Evolution; 2010 Nov; 64(11):3213-31. PubMed ID: 20662921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Budding yeast as a model organism for population genetics.
    Zeyl C
    Yeast; 2000 Jun; 16(8):773-84. PubMed ID: 10861902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary Transition from Pathogenicity to Commensalism: Global Regulator Mutations Mediate Fitness Gains through Virulence Attenuation.
    Jansen G; Crummenerl LL; Gilbert F; Mohr T; Pfefferkorn R; Thänert R; Rosenstiel P; Schulenburg H
    Mol Biol Evol; 2015 Nov; 32(11):2883-96. PubMed ID: 26199376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating Gene Expression and Codon-Specific Translational Efficiencies, Mutation Biases, and Selection Coefficients from Genomic Data Alone.
    Gilchrist MA; Chen WC; Shah P; Landerer CL; Zaretzki R
    Genome Biol Evol; 2015 May; 7(6):1559-79. PubMed ID: 25977456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous mutation rate is a plastic trait associated with population density across domains of life.
    Krašovec R; Richards H; Gifford DR; Hatcher C; Faulkner KJ; Belavkin RV; Channon A; Aston E; McBain AJ; Knight CG
    PLoS Biol; 2017 Aug; 15(8):e2002731. PubMed ID: 28837573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species.
    Mosquera-Rendón J; Rada-Bravo AM; Cárdenas-Brito S; Corredor M; Restrepo-Pineda E; Benítez-Páez A
    BMC Genomics; 2016 Jan; 17():45. PubMed ID: 26754847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased time sampling in an evolve-and-resequence experiment with outcrossing Saccharomyces cerevisiae reveals multiple paths of adaptive change.
    Phillips MA; Kutch IC; Long AD; Burke MK
    Mol Ecol; 2020 Dec; 29(24):4898-4912. PubMed ID: 33135198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of low mutation rates in experimental mutator populations of Saccharomyces cerevisiae.
    McDonald MJ; Hsieh YY; Yu YH; Chang SL; Leu JY
    Curr Biol; 2012 Jul; 22(13):1235-40. PubMed ID: 22727704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic properties influencing the evolvability of gene expression.
    Landry CR; Lemos B; Rifkin SA; Dickinson WJ; Hartl DL
    Science; 2007 Jul; 317(5834):118-21. PubMed ID: 17525304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The probability of parallel evolution.
    Orr HA
    Evolution; 2005 Jan; 59(1):216-20. PubMed ID: 15792240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.