These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Characterization of surfactant and phospholipid vesicles for use as pseudostationary phases in electrokinetic chromatography. Pascoe RJ; Foley JP Electrophoresis; 2003 Dec; 24(24):4227-40. PubMed ID: 14679570 [TBL] [Abstract][Full Text] [Related]
5. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
6. Bilayered phospholipid micelles and capillary electrophoresis: a new additive for electrokinetic chromatography. Holland LA; Leigh AM Electrophoresis; 2003 Sep; 24(17):2935-9. PubMed ID: 12973796 [TBL] [Abstract][Full Text] [Related]
7. Electrokinetic chromatographic characterization of novel catanionic surfactants vesicle as pseudostationary phase. Lu J; Ni X; Cao Y; Ma X; Cao G Electrophoresis; 2015 Jan; 36(2):312-8. PubMed ID: 25348281 [TBL] [Abstract][Full Text] [Related]
8. Effect of phospholipid composition and phase on nanodisc films at the solid-liquid interface as studied by neutron reflectivity. Wadsäter M; Barker R; Mortensen K; Feidenhans'l R; Cárdenas M Langmuir; 2013 Mar; 29(9):2871-80. PubMed ID: 23373466 [TBL] [Abstract][Full Text] [Related]
9. Lipid packing is disrupted in copolymeric nanodiscs compared with intact membranes. Real Hernandez LM; Levental I Biophys J; 2023 Jun; 122(11):2256-2266. PubMed ID: 36641625 [TBL] [Abstract][Full Text] [Related]
10. Solubilization of Phospholipid by Surfactin Leading to Lipid Nanodisc and Fibrous Architecture Formation. Imura T; Yanagisawa S; Ikeda Y; Moriyama R; Sakai K; Sakai H; Taira T Molecules; 2024 Mar; 29(6):. PubMed ID: 38542936 [TBL] [Abstract][Full Text] [Related]
11. Congeneric behavior in estimations of octanol-water partition coefficients by micellar electrokinetic chromatography. Trone MD; Leonard MS; Khaledi MG Anal Chem; 2000 Mar; 72(6):1228-35. PubMed ID: 10740864 [TBL] [Abstract][Full Text] [Related]
12. Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography. Part II: characterization of chemical selectivity using two linear solvation energy relationship models. Akbay C; Agbaria RA; Warner IM Electrophoresis; 2005 Jan; 26(2):426-45. PubMed ID: 15657890 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulation of apolipoprotein E3 lipid nanodiscs. Allen P; Smith AC; Benedicto V; Abdulhasan A; Narayanaswami V; Tapavicza E Biochim Biophys Acta Biomembr; 2024 Jan; 1866(1):184230. PubMed ID: 37704040 [TBL] [Abstract][Full Text] [Related]
14. Study of solute partitioning into cationic vesicles of dihexadecyldimethylammonium bromide using electrokinetic chromatography. Agbodjan AA; Khaledi MG J Chromatogr A; 2003 Jul; 1004(1-2):145-53. PubMed ID: 12929970 [TBL] [Abstract][Full Text] [Related]
15. Sphingomyelin ability to act as chiral selector using nanodisc electrokinetic chromatography. Penny WM; Palmer CP Chem Phys Lipids; 2018 Aug; 214():11-14. PubMed ID: 29753650 [TBL] [Abstract][Full Text] [Related]
16. Linear solvation energy relationships of anionic dimeric surfactants in micellar electrokinetic chromatography II. Effect of the length of a hydrophilic spacer. Van Biesen G; Bottaro CS J Chromatogr A; 2008 Feb; 1180(1-2):171-8. PubMed ID: 18155713 [TBL] [Abstract][Full Text] [Related]