These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 27859871)
1. Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation. Jiayao Z; Guanshan Z; Jinchi Z; Yuyin C; Yongqiang Z Microsc Res Tech; 2017 Mar; 80(3):305-311. PubMed ID: 27859871 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Yang M; Shuai Y; Zhang C; Chen Y; Zhu L; Mao C; OuYang H Biomacromolecules; 2014 Apr; 15(4):1185-93. PubMed ID: 24666022 [TBL] [Abstract][Full Text] [Related]
3. Mineralization and biocompatibility of Antheraea pernyi (A. pernyi) silk sericin film for potential bone tissue engineering. Yang M; Mandal N; Shuai Y; Zhou G; Min S; Zhu L Biomed Mater Eng; 2014; 24(1):815-24. PubMed ID: 24211968 [TBL] [Abstract][Full Text] [Related]
4. Nucleation of hydroxyapatite on Antheraea pernyi (A. pernyi) silk fibroin film. Yang M; Shuai Y; Zhou G; Mandal N; Zhu L Biomed Mater Eng; 2014; 24(1):731-40. PubMed ID: 24211958 [TBL] [Abstract][Full Text] [Related]
5. Ca Yang M; Zhou G; Shuai Y; Wang J; Zhu L; Mao C J Mater Chem B; 2015 Mar; 3(12):2455-2462. PubMed ID: 26029374 [TBL] [Abstract][Full Text] [Related]
6. Silk as templates for hydroxyapatite biomineralization: A comparative study of Bombyx mori and Antheraea pernyi silkworm silks. Zhang H; You R; Yan K; Lu Z; Fan Q; Li X; Wang D Int J Biol Macromol; 2020 Dec; 164():2842-2850. PubMed ID: 32828890 [TBL] [Abstract][Full Text] [Related]
7. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. Du S; Zhang J; Zhou WT; Li QX; Greene GW; Zhu HJ; Li JL; Wang XG J Colloid Interface Sci; 2016 Sep; 478():316-23. PubMed ID: 27314644 [TBL] [Abstract][Full Text] [Related]
8. Hydroxyapatite/sericin composites: A simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process. Veiga A; Castro F; Reis CC; Sousa A; Oliveira AL; Rocha F Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110400. PubMed ID: 31923995 [TBL] [Abstract][Full Text] [Related]
10. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films. Luan XY; Wang Y; Duan X; Duan QY; Li MZ; Lu SZ; Zhang HX; Zhang XG Biomed Mater; 2006 Dec; 1(4):181-7. PubMed ID: 18458403 [TBL] [Abstract][Full Text] [Related]
11. Modulation of cell growth on exposure to silkworm and spider silk fibers. Hakimi O; Gheysens T; Vollrath F; Grahn MF; Knight DP; Vadgama P J Biomed Mater Res A; 2010 Mar; 92(4):1366-72. PubMed ID: 19353564 [TBL] [Abstract][Full Text] [Related]
12. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
13. Biomineralization Directed by Prenucleated Calcium and Phosphorus Nanoclusters Improving Mechanical Properties and Osteogenic Potential of Antheraea pernyi Silk Fibroin-Based Artificial Periosteum. Shuai Y; Lu H; Lv R; Wang J; Wan Q; Mao C; Yang M Adv Healthc Mater; 2021 Apr; 10(8):e2001695. PubMed ID: 33720549 [TBL] [Abstract][Full Text] [Related]
14. Understanding the molecular mechanism of improved proliferation and osteogenic potential of human mesenchymal stem cells grown on a polyelectrolyte complex derived from non-mulberry silk fibroin and chitosan. Bissoyi A; Kumar Singh A; Kumar Pattanayak S; Bit A; Kumar Sinha S; Patel A; Jain V; Kumar Patra P Biomed Mater; 2017 Dec; 13(1):015011. PubMed ID: 29216011 [TBL] [Abstract][Full Text] [Related]
15. Self-assembly and mineralization of genetically modifiable biological nanofibers driven by β-structure formation. Xu H; Cao B; George A; Mao C Biomacromolecules; 2011 Jun; 12(6):2193-9. PubMed ID: 21520924 [TBL] [Abstract][Full Text] [Related]
16. Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering. Yang M; Zhou G; Castano-Izquierdo H; Zhu Y; Mao C J Biomed Nanotechnol; 2015 Mar; 11(3):447-56. PubMed ID: 25883539 [TBL] [Abstract][Full Text] [Related]
17. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold. Wang G; Qiu J; Zheng L; Ren N; Li J; Liu H; Miao J J Biomater Sci Polym Ed; 2014; 25(16):1813-27. PubMed ID: 25166866 [TBL] [Abstract][Full Text] [Related]
18. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties and structure of silkworm cocoons: a comparative study of Bombyx mori, Antheraea assamensis, Antheraea pernyi and Antheraea mylitta silkworm cocoons. Zhang J; Kaur J; Rajkhowa R; Li JL; Liu XY; Wang XG Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3206-13. PubMed ID: 23706202 [TBL] [Abstract][Full Text] [Related]
20. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold. Panda N; Bissoyi A; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]