These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 27859937)
1. Integrating mechanistic and empirical model projections to assess climate impacts on tree species distributions in northwestern North America. Case MJ; Lawler JJ Glob Chang Biol; 2017 May; 23(5):2005-2015. PubMed ID: 27859937 [TBL] [Abstract][Full Text] [Related]
2. An ecoregion assessment of projected tree species vulnerabilities in western North America through the 21st century. Mathys AS; Coops NC; Waring RH Glob Chang Biol; 2017 Feb; 23(2):920-932. PubMed ID: 27435828 [TBL] [Abstract][Full Text] [Related]
3. Emergent climate and CO Rollinson CR; Liu Y; Raiho A; Moore DJP; McLachlan J; Bishop DA; Dye A; Matthes JH; Hessl A; Hickler T; Pederson N; Poulter B; Quaife T; Schaefer K; Steinkamp J; Dietze MC Glob Chang Biol; 2017 Jul; 23(7):2755-2767. PubMed ID: 28084043 [TBL] [Abstract][Full Text] [Related]
4. A new model to simulate climate-change impacts on forest succession for local land management. Yospin GI; Bridgham SD; Neilson RP; Bolte JP; Bachelet DM; Gould PJ; Harrington CA; Kertis JA; Evers C; Johnson BR Ecol Appl; 2015 Jan; 25(1):226-42. PubMed ID: 26255370 [TBL] [Abstract][Full Text] [Related]
5. Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic-envelope approach. Notaro M; Mauss A; Williams JW Ecol Appl; 2012 Jun; 22(4):1365-88. PubMed ID: 22827141 [TBL] [Abstract][Full Text] [Related]
6. Climatic niche comparison among ploidal levels in the classic autopolyploid system, Galax urceolata. Gaynor ML; Marchant DB; Soltis DE; Soltis PS Am J Bot; 2018 Oct; 105(10):1631-1642. PubMed ID: 30239980 [TBL] [Abstract][Full Text] [Related]
7. Intraspecific Niche Models for Ponderosa Pine (Pinus ponderosa) Suggest Potential Variability in Population-Level Response to Climate Change. Maguire KC; Shinneman DJ; Potter KM; Hipkins VD Syst Biol; 2018 Nov; 67(6):965-978. PubMed ID: 29548012 [TBL] [Abstract][Full Text] [Related]
8. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846 [TBL] [Abstract][Full Text] [Related]
9. A fuzzy logic decision support model for climate-driven biomass loss risk in western Oregon and Washington. Sheehan T; Bachelet D PLoS One; 2019; 14(10):e0222051. PubMed ID: 31652268 [TBL] [Abstract][Full Text] [Related]
10. Niche shifts after long-distance dispersal events in bipolar sedges (Carex, Cyperaceae). Villaverde T; González-Moreno P; Rodríguez-Sánchez F; Escudero M Am J Bot; 2017 Nov; 104(11):1765-1774. PubMed ID: 29167159 [TBL] [Abstract][Full Text] [Related]
11. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model. King DA; Bachelet DM; Symstad AJ Ecol Evol; 2013 Dec; 3(15):5076-97. PubMed ID: 24455138 [TBL] [Abstract][Full Text] [Related]
12. North American vegetation model for land-use planning in a changing climate: a solution to large classification problems. Rehfeldt GE; Crookston NL; Sáenz-Romero C; Campbell EM Ecol Appl; 2012 Jan; 22(1):119-41. PubMed ID: 22471079 [TBL] [Abstract][Full Text] [Related]
13. Projected impacts of climate change on the range and phenology of three culturally-important shrub species. Prevéy JS; Parker LE; Harrington CA PLoS One; 2020; 15(5):e0232537. PubMed ID: 32384124 [TBL] [Abstract][Full Text] [Related]
14. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change. Gustafson EJ; De Bruijn AM; Pangle RE; Limousin JM; McDowell NG; Pockman WT; Sturtevant BR; Muss JD; Kubiske ME Glob Chang Biol; 2015 Feb; 21(2):843-56. PubMed ID: 25155807 [TBL] [Abstract][Full Text] [Related]