These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27860177)

  • 1. Sugar-Edge Interactions in a DNA-RNA G-Quadruplex: Evidence of Sequential C-H⋅⋅⋅O Hydrogen Bonds Contributing to RNA Quadruplex Folding.
    Dickerhoff J; Appel B; Müller S; Weisz K
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):15162-15165. PubMed ID: 27860177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-RNA Hybrid Quadruplexes Reveal Interactions that Favor RNA Parallel Topologies.
    Haase L; Dickerhoff J; Weisz K
    Chemistry; 2018 Oct; 24(57):15365-15371. PubMed ID: 30084512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guanine quadruplex formation by RNA/DNA hybrid analogs of Oxytricha telomere G(4)T(4)G(4) fragment.
    Vondrusková J; Kypr J; Kejnovská I; Fialová M; Vorlícková M
    Biopolymers; 2008 Oct; 89(10):797-806. PubMed ID: 18491413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes.
    Zhou J; Amrane S; Rosu F; Salgado GF; Bian Y; Tateishi-Karimata H; Largy E; Korkut DN; Bourdoncle A; Miyoshi D; Zhang J; Ju H; Wang W; Sugimoto N; Gabelica V; Mergny JL
    J Am Chem Soc; 2017 Jun; 139(23):7768-7779. PubMed ID: 28523907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conformationally constrained nucleotide analogue controls the folding topology of a DNA g-quadruplex.
    Dominick PK; Jarstfer MB
    J Am Chem Soc; 2004 Apr; 126(16):5050-1. PubMed ID: 15099071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-2'-Deoxyguanosine can switch DNA G-quadruplex topologies from antiparallel to parallel.
    Filitcheva J; Edwards PJB; Norris GE; Filichev VV
    Org Biomol Chem; 2019 Apr; 17(16):4031-4042. PubMed ID: 30950474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of G-quadruplex folding topology with LNA-modified human telomeric sequences in K+ solution.
    Pradhan D; Hansen LH; Vester B; Petersen M
    Chemistry; 2011 Feb; 17(8):2405-13. PubMed ID: 21264960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Dynamical Characterization of DNA and RNA Quadruplexes Obtained from the GGGGCC and GGGCCT Hexanucleotide Repeats Associated with C9FTD/ALS and SCA36 Diseases.
    Zhang Y; Roland C; Sagui C
    ACS Chem Neurosci; 2018 May; 9(5):1104-1117. PubMed ID: 29281254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of telomeric RNA quadruplex--acridine ligand recognition.
    Collie GW; Sparapani S; Parkinson GN; Neidle S
    J Am Chem Soc; 2011 Mar; 133(8):2721-8. PubMed ID: 21291211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar-modified G-quadruplexes: effects of LNA-, 2'F-RNA- and 2'F-ANA-guanosine chemistries on G-quadruplex structure and stability.
    Li Z; Lech CJ; Phan AT
    Nucleic Acids Res; 2014 Apr; 42(6):4068-79. PubMed ID: 24371274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human telomere quadruplex: refolding and selection of individual conformers via RNA/DNA chimeric editing.
    Qi J; Shafer RH
    Biochemistry; 2007 Jun; 46(25):7599-606. PubMed ID: 17539606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting hydrogen bonding interactions to probe smaller linear and cyclic diamines binding to G-quadruplexes: a DFT and molecular dynamics study.
    Kanti Si M; Sen A; Ganguly B
    Phys Chem Chem Phys; 2017 May; 19(18):11474-11484. PubMed ID: 28425525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate-DNA interactions at G-quadruplexes: folding and stability changes by attaching sugars at the 5'-end.
    Gómez-Pinto I; Vengut-Climent E; Lucas R; Aviñó A; Eritja R; González C; Morales JC
    Chemistry; 2013 Feb; 19(6):1920-7. PubMed ID: 23315826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak Supramolecular Interactions Governing Parallel and Antiparallel DNA Quadruplexes: Insights from Large-Scale Quantum Mechanics Analysis of Experimentally Derived Models.
    Yurenko YP; Novotný J; Marek R
    Chemistry; 2017 Apr; 23(23):5573-5584. PubMed ID: 28225208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating DNA G-Quadruplex Structures by Using Guanosine Analogues.
    Haase L; Karg B; Weisz K
    Chembiochem; 2019 Apr; 20(8):985-993. PubMed ID: 30511814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the properties and the solution structure for RNA and DNA quadruplexes which contain two GGAGG sequences joined with a tetranucleotide linker.
    Liu H; Kugimiya A; Sakurai T; Katahira M; Uesugi S
    Nucleosides Nucleotides Nucleic Acids; 2002; 21(11-12):785-801. PubMed ID: 12537021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positional impact of fluorescently modified G-tetrads within polymorphic human telomeric G-quadruplex structures.
    Sproviero M; Fadock KL; Witham AA; Manderville RA
    ACS Chem Biol; 2015 May; 10(5):1311-8. PubMed ID: 25689465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Templated Formation of Discrete RNA and DNA:RNA Hybrid G-Quadruplexes and Their Interactions with Targeting Ligands.
    Bonnat L; Dejeu J; Bonnet H; Génnaro B; Jarjayes O; Thomas F; Lavergne T; Defrancq E
    Chemistry; 2016 Feb; 22(9):3139-47. PubMed ID: 26808196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dimeric RNA quadruplex architecture comprised of two G:G(:A):G:G(:A) hexads, G:G:G:G tetrads and UUUU loops.
    Liu H; Matsugami A; Katahira M; Uesugi S
    J Mol Biol; 2002 Oct; 322(5):955-70. PubMed ID: 12367521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G-quadruplexes incorporating modified constituents: a review.
    Sagi J
    J Biomol Struct Dyn; 2014; 32(3):477-511. PubMed ID: 23528013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.