BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 27860248)

  • 21. Evidence for limited D1 and D2 receptor coexpression and colocalization within the dorsal striatum of the neonatal mouse.
    Biezonski DK; Trifilieff P; Meszaros J; Javitch JA; Kellendonk C
    J Comp Neurol; 2015 Jun; 523(8):1175-89. PubMed ID: 25556545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation.
    Nader MA; Czoty PW
    Am J Psychiatry; 2005 Aug; 162(8):1473-82. PubMed ID: 16055768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization.
    Wang M; Pei L; Fletcher PJ; Kapur S; Seeman P; Liu F
    Mol Brain; 2010 Sep; 3():25. PubMed ID: 20813060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopamine D2 Receptors Modulate Pyramidal Neurons in Mouse Medial Prefrontal Cortex through a Stimulatory G-Protein Pathway.
    Robinson SE; Sohal VS
    J Neurosci; 2017 Oct; 37(42):10063-10073. PubMed ID: 28912160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs.
    Gremel CM; Lovinger DM
    Genes Brain Behav; 2017 Jan; 16(1):71-85. PubMed ID: 27457495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual Dopaminergic Regulation of Corticostriatal Plasticity by Cholinergic Interneurons and Indirect Pathway Medium Spiny Neurons.
    Augustin SM; Chancey JH; Lovinger DM
    Cell Rep; 2018 Sep; 24(11):2883-2893. PubMed ID: 30208314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A competitive model for striatal action selection.
    Bariselli S; Fobbs WC; Creed MC; Kravitz AV
    Brain Res; 2019 Jun; 1713():70-79. PubMed ID: 30300636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes.
    Borroto-Escuela DO; Wydra K; Pintsuk J; Narvaez M; Corrales F; Zaniewska M; Agnati LF; Franco R; Tanganelli S; Ferraro L; Filip M; Fuxe K
    Neural Plast; 2016; 2016():4827268. PubMed ID: 27872762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability.
    Shumay E; Fowler JS; Wang GJ; Logan J; Alia-Klein N; Goldstein RZ; Maloney T; Wong C; Volkow ND
    Transl Psychiatry; 2012 Mar; 2(3):e86. PubMed ID: 22832851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo.
    Mao LM; Wang JQ
    J Neurosci Res; 2016 Apr; 94(4):329-38. PubMed ID: 26777117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia.
    Napolitano F; Pasqualetti M; Usiello A; Santini E; Pacini G; Sciamanna G; Errico F; Tassone A; Di Dato V; Martella G; Cuomo D; Fisone G; Bernardi G; Mandolesi G; Mercuri NB; Standaert DG; Pisani A
    Neurobiol Dis; 2010 Jun; 38(3):434-45. PubMed ID: 20227500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse.
    Fehr C; Yakushev I; Hohmann N; Buchholz HG; Landvogt C; Deckers H; Eberhardt A; Kläger M; Smolka MN; Scheurich A; Dielentheis T; Schmidt LG; Rösch F; Bartenstein P; Gründer G; Schreckenberger M
    Am J Psychiatry; 2008 Apr; 165(4):507-14. PubMed ID: 18316420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Striatal dopamine 2 receptor upregulation during development predisposes to diet-induced obesity by reducing energy output in mice.
    Labouesse MA; Sartori AM; Weinmann O; Simpson EH; Kellendonk C; Weber-Stadlbauer U
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10493-10498. PubMed ID: 30254156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental and age-related changes of dopamine transporter, and dopamine D1 and D2 receptors in human basal ganglia.
    Meng SZ; Ozawa Y; Itoh M; Takashima S
    Brain Res; 1999 Oct; 843(1-2):136-44. PubMed ID: 10528120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons.
    Sciamanna G; Napolitano F; Pelosi B; Bonsi P; Vitucci D; Nuzzo T; Punzo D; Ghiglieri V; Ponterio G; Pasqualetti M; Pisani A; Usiello A
    Neurobiol Dis; 2015 Jun; 78():146-61. PubMed ID: 25818655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of dopamine receptor and neuropeptide expression in the basal ganglia of monkeys treated with MPTP.
    Betarbet R; Greenamyre JT
    Exp Neurol; 2004 Oct; 189(2):393-403. PubMed ID: 15380489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum.
    Wei W; Ding S; Zhou FM
    J Neurophysiol; 2017 Mar; 117(3):987-999. PubMed ID: 27927785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions of CaMKII with dopamine D2 receptors: roles in levodopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson's rats.
    Zhang S; Xie C; Wang Q; Liu Z
    Sci Rep; 2014 Oct; 4():6811. PubMed ID: 25351365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Distinct roles of the direct and indirect pathways in the basal ganglia circuit mechanism].
    Morita M; Hikida T
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2015 Nov; 35(5-6):107-11. PubMed ID: 26785520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia.
    Nadjar A; Brotchie JM; Guigoni C; Li Q; Zhou SB; Wang GJ; Ravenscroft P; Georges F; Crossman AR; Bezard E
    J Neurosci; 2006 Aug; 26(34):8653-61. PubMed ID: 16928853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.