These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 27860405)
1. Flow-cytometric screening of aggregation-inhibitors using a fluorescence-assisted intracellular method. Lindberg H; Sandersjöö L; Meister SW; Uhlén M; Löfblom J; Ståhl S Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27860405 [TBL] [Abstract][Full Text] [Related]
2. A truncated and dimeric format of an Affibody library on bacteria enables FACS-mediated isolation of amyloid-beta aggregation inhibitors with subnanomolar affinity. Lindberg H; Härd T; Löfblom J; Ståhl S Biotechnol J; 2015 Sep; 10(11):1707-18. PubMed ID: 26184787 [TBL] [Abstract][Full Text] [Related]
3. A plant cell-based system that predicts aβ42 misfolding: potential as a drug discovery tool for Alzheimer's disease. Zhao T; Zeng Y; Kermode AR Mol Genet Metab; 2012 Nov; 107(3):571-9. PubMed ID: 22944366 [TBL] [Abstract][Full Text] [Related]
4. Discovery of amyloid-beta aggregation inhibitors using an engineered assay for intracellular protein folding and solubility. Lee LL; Ha H; Chang YT; DeLisa MP Protein Sci; 2009 Feb; 18(2):277-86. PubMed ID: 19177561 [TBL] [Abstract][Full Text] [Related]
5. Protein aggregation propensity is a crucial determinant of intracellular inclusion formation and quality control degradation. Villar-Piqué A; Ventura S Biochim Biophys Acta; 2013 Dec; 1833(12):2714-2724. PubMed ID: 23856334 [TBL] [Abstract][Full Text] [Related]
6. A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems. Navarro S; Carija A; Muñoz-Torrero D; Ventura S Eur J Med Chem; 2016 Oct; 121():785-792. PubMed ID: 26608003 [TBL] [Abstract][Full Text] [Related]
7. A high-throughput screen for compounds that inhibit aggregation of the Alzheimer's peptide. Kim W; Kim Y; Min J; Kim DJ; Chang YT; Hecht MH ACS Chem Biol; 2006 Aug; 1(7):461-9. PubMed ID: 17168524 [TBL] [Abstract][Full Text] [Related]
8. An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains. Fleetwood F; Andersson KG; Ståhl S; Löfblom J Microb Cell Fact; 2014 Dec; 13():179. PubMed ID: 25547008 [TBL] [Abstract][Full Text] [Related]
9. Critique of the use of fluorescence-based reporters in Escherichia coli as a screening tool for the identification of peptide inhibitors of Aβ42 aggregation. Wright O; Zhang L; Liu Y; Yoshimi T; Zheng Y; Tunnacliffe A J Pept Sci; 2013 Feb; 19(2):74-83. PubMed ID: 23255255 [TBL] [Abstract][Full Text] [Related]
10. Engineered non-fluorescent Affibody molecules facilitate studies of the amyloid-beta (Aβ) peptide in monomeric form: low pH was found to reduce Aβ/Cu(II) binding affinity. Lindgren J; Segerfeldt P; Sholts SB; Gräslund A; Karlström AE; Wärmländer SK J Inorg Biochem; 2013 Mar; 120():18-23. PubMed ID: 23262458 [TBL] [Abstract][Full Text] [Related]
11. Linking amyloid protein aggregation and yeast survival. Morell M; de Groot NS; Vendrell J; Avilés FX; Ventura S Mol Biosyst; 2011 Apr; 7(4):1121-8. PubMed ID: 21240401 [TBL] [Abstract][Full Text] [Related]
12. General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein. Jia L; Wang W; Yan Y; Hu R; Sang J; Zhao W; Wang Y; Wei W; Cui W; Yang G; Lu F; Zheng J; Liu F ACS Appl Mater Interfaces; 2020 Jul; 12(28):31182-31194. PubMed ID: 32584021 [TBL] [Abstract][Full Text] [Related]
13. Recombinant amyloid beta-peptide production by coexpression with an affibody ligand. Macao B; Hoyer W; Sandberg A; Brorsson AC; Dobson CM; Härd T BMC Biotechnol; 2008 Oct; 8():82. PubMed ID: 18973685 [TBL] [Abstract][Full Text] [Related]
14. Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Pulido SA; Muñoz DL; Restrepo AM; Mesa CV; Alzate JF; Vélez ID; Robledo SM Acta Trop; 2012 Apr; 122(1):36-45. PubMed ID: 22155571 [TBL] [Abstract][Full Text] [Related]
15. Directed evolution of the 3C protease from coxsackievirus using a novel fluorescence-assisted intracellular method. Meister SW; Hendrikse NM; Löfblom J Biol Chem; 2019 Feb; 400(3):405-415. PubMed ID: 30521472 [TBL] [Abstract][Full Text] [Related]
16. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins. Joshi P; Chia S; Habchi J; Knowles TP; Dobson CM; Vendruscolo M ACS Comb Sci; 2016 Mar; 18(3):144-53. PubMed ID: 26923286 [TBL] [Abstract][Full Text] [Related]
17. Flow cytometric analysis of E. coli on agar plates: implications for recombinant protein production. Wyre C; Overton TW Biotechnol Lett; 2014 Jul; 36(7):1485-94. PubMed ID: 24652548 [TBL] [Abstract][Full Text] [Related]
18. In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time. Villar-Piqué A; Espargaró A; Ventura S; Sabate R Biotechnol J; 2016 Jan; 11(1):172-7. PubMed ID: 26580000 [TBL] [Abstract][Full Text] [Related]
19. Curcumin inhibits aggregation of alpha-synuclein. Pandey N; Strider J; Nolan WC; Yan SX; Galvin JE Acta Neuropathol; 2008 Apr; 115(4):479-89. PubMed ID: 18189141 [TBL] [Abstract][Full Text] [Related]
20. Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation. van Ham TJ; Esposito A; Kumita JR; Hsu ST; Kaminski Schierle GS; Kaminski CF; Dobson CM; Nollen EA; Bertoncini CW J Mol Biol; 2010 Jan; 395(3):627-42. PubMed ID: 19891973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]